Abstract:
A donor substrate and a method of forming an organic semiconductor layer pattern using the donor substrate, whereby a donor substrate is formed using an organic semiconductor precursor having a thermally decomposable substituent through a wet process, the organic semiconductor precursor substrate in the donor substrate is transferred to a receptor substrate as a pattern and heated, and thus is changed into an organic semiconductor. As a result, an organic semiconductor layer pattern is obtained. The method can be used in the manufacture of various devices such as organic light emitting diode and organic thin film transistor. A low-molecular weight organic semiconductor layer pattern can be formed through a wet process, not through deposition. Thus, using the method, a flat display device can be conveniently manufactured at low cost.
Abstract:
An organic light emitting display apparatus has a hybrid structure in which resonance red, green and blue pixels and a non-resonance white pixel are combined. An optical path control layer and a white color filter which selectively absorbs light having a specific wavelength are included in the white pixel. Thus, the organic light emitting display apparatus has a large viewing angle, low power consumption, and long lifetime.
Abstract:
A donor substrate for forming a nano conductive film includes a base substrate and a transferring layer that is disposed on the base substrate. The transferring layer includes nano conductive particles and an organic semiconductor. A method of patterning a nano conductive film is provided, wherein a donor substrate in which nano conductive particles are dispersed by employing an organic semiconductor having low molecular weight as a binder is prepared, and nano conductive particles are patterned on a receptor substrate by employing the donor substrate. The method can be used to prepare patterns of various devices including a display device such as an OLED and an OTFT. Such a device can be prepared simply and economically by preparing a device comprising nano conductive particles and an organic semiconductor in wet basis even without deposition.
Abstract:
An aminostyryl compound represented by Formula 1: The organic light emitting device using the aminostyryl compound exhibits low driving voltage and improved brightness, efficiency, and color purity.
Abstract:
A semiconductor memory device includes a device isolation layer formed in a semiconductor substrate to define a plurality of active regions. Floating gates are disposed on the active regions. A control gate line overlaps top surfaces of the floating gates and crosses over the active regions. The control gate line has an extending portion disposed in a gap between adjacent floating gates and overlapping sidewalls of the adjacent floating gates. First spacers are disposed on the sidewalls of the adjacent floating gates. Each of the first spacers extends along a sidewall of the active region and along a sidewall of the device isolation layer. Second spacers are disposed between outer sidewalls of the first spacers and the extending portion and are disposed above the device isolation layer. An electronic device including a semiconductor memory device and a method of fabricating a semiconductor memory device are also disclosed.
Abstract:
An organic light emitting device (OLED) and a white light emitting device are provided. The OLED includes a substrate, a mesh shaped anode formed on the substrate and designed to pass light, a cathode facing the anode, and an organic light emitting layer located between the anode and the cathode.
Abstract:
An organic light-emitting device including a first electrode, a second electrode, and an organic layer interposed between the first electrode and the second electrode. The organic layer includes at least one organosiloxane compound selected from organosiloxane compounds represented by An organic light-emitting device using the organosiloxane compound has a low operating voltage, high color purity, and high efficiency.
Abstract:
A method of fabricating a flash memory device produces a device that has a small cell area and yet a high coupling ratio. First, a basic structure is provided that includes a substrate, a field isolation film protruding from the substrate, and floating gates disposed on the substrate on opposite sides of the floating gate. A first etch process is performed to remove a portion of the field isolation film and thereby expose upper portions of the floating gates. Then, a second etch process is performed to knock off the edges of the floating gates. Thus, a large amount of space is secured between the floating gates for a dielectric film and a control gate.
Abstract:
A three-dimensional (3D) semiconductor device includes a stack structure including first and second stacks stacked on a substrate. Each of the first and second stacks includes a first electrode and a second electrode on the first electrode. A sidewall of the second electrode of the first stack is horizontally spaced apart from a sidewall of the second electrode of the second stack by a first distance. A sidewall of the first electrode is horizontally spaced apart from the sidewall of the second electrode by a second distance in each of the first and second stacks. The second distance is smaller than a half of the first distance.
Abstract:
A three-dimensional (3D) semiconductor device includes a stack structure including first and second stacks stacked on a substrate. Each of the first and second stacks includes a first electrode and a second electrode on the first electrode. A sidewall of the second electrode of the first stack is horizontally spaced apart from a sidewall of the second electrode of the second stack by a first distance. A sidewall of the first electrode is horizontally spaced apart from the sidewall of the second electrode by a second distance in each of the first and second stacks. The second distance is smaller than a half of the first distance.