Abstract:
A display device includes: a display panel including a display area, and a peripheral area disposed in the vicinity of the display area; a scan driver including a plurality of stages integrated on the peripheral area; a plurality of gate lines connected to the plurality of stages, respectively; and a plurality of pixel rows in the display area and connected with the plurality of gate lines, respectively. The plurality of stages and the plurality of pixel rows are each arranged in a first direction in a line, the peripheral area includes a fan-out region between the plurality of stages and the plurality of pixel rows, and at least one of the plurality of gate lines in the fan-out region is inclined with respect to the first direction, and a second direction perpendicular to the first direction.
Abstract:
Gate-driving circuitry of a thin film transistor array panel is formed on the same plane as a display area of the transistor array panel. The gate-driving circuitry includes driving circuitry and signal lines having apertures. Thus, a sufficient amount of light, even though illuminated from the thin film transistor array panel side, can reach a photosetting sealant overlapping at least in part the gate-driving circuitry. The thin film transistor array panel and the counter panel are put together air-tight and moisture-tight. Consequently, the gate-driving circuitry can avoid corrosion by moisture introduced from outside. Gate-driving circuitry malfunctions can also be reduced.
Abstract:
Gate-driving circuitry of a thin film transistor array panel is formed on the same plane as a display area of the transistor array panel. The gate-driving circuitry includes driving circuitry and signal lines having apertures. Thus, a sufficient amount of light, even though illuminated from the thin film transistor array panel side, can reach a photosetting sealant overlapping at least in part the gate-driving circuitry. The thin film transistor array panel and the counter panel are put together air-tight and moisture-tight. Consequently, the gate-driving circuitry can avoid corrosion by moisture introduced from outside. Gate-driving circuitry malfunctions can also be reduced.
Abstract:
A display device includes a display panel, a data driver, a scan driver, and a power supply. The display panel includes power voltage lines and pixels coupled to data lines and scan lines. The data driver supplies data voltages to the data lines. The scan driver provides scan signals to the scan lines. The power supply supplies a power voltage to the power voltage lines. The display panel includes a compensation resistance coupled between s pixels and one of the power voltage lines.
Abstract:
A display device includes: a display panel including a display area, and a peripheral area disposed in the vicinity of the display area; a scan driver including a plurality of stages integrated on the peripheral area; a plurality of gate lines connected to the plurality of stages, respectively; and a plurality of pixel rows in the display area and connected with the plurality of gate lines, respectively. The plurality of stages and the plurality of pixel rows are each arranged in a first direction in a line, the peripheral area includes a fan-out region between the plurality of stages and the plurality of pixel rows, and at least one of the plurality of gate lines in the fan-out region is inclined with respect to the first direction, and a second direction perpendicular to the first direction.
Abstract:
A stage circuit and a scan driver, the stage circuit including a switch unit configured to selectively electrically couple a first node to one of a first input terminal and a second input terminal, a first driver coupled to the first node, to a second node, to a third node, to a first clock terminal, and to a second clock terminal, and a second driver coupled to the second node, to the third node, to a third clock terminal, and to a common terminal, and configured to output a scan signal to an output terminal.
Abstract:
A thin film transistor array panel is provided and includes a gate line, a gate insulating layer covering the gate line, a semiconductor layer disposed on the gate insulating layer, and a data line and a drain electrode disposed on the semiconductor layer. The data line and the drain electrode have a dual-layered structure including a lower layer and an upper layer with the lower layer having a first portion protruded outside the upper layer and the semiconductor layer having a second portion protruded outside the edge of the lower layer.
Abstract:
A liquid crystal display device for improving picture quality includes a common electrode formed on a first substrate, gate lines and data lines formed on a second substrate bonded to the first substrate by a sealing member with liquid crystals disposed therebetween, thin film transistors connected to the gate lines and to the data lines, pixel electrodes formed in subpixel regions, each pixel electrode having a long side in a direction of the gate lines and having a short side in a direction of the data lines fanout lines for supplying a driving signals from the driving chips to the data lines, first conductive spacers formed between the fanout lines connected to different driving chips, for supplying a common voltage to the common electrode, and second conductive spacers formed between the fanout lines connected to the same driving chip, for supplying the common voltage to the common electrode.
Abstract:
In a color filter substrate and a liquid crystal display device including the same, the color filter substrate includes: a first black matrix not having an opening; a second black matrix having an opening; the first black matrix and the second black matrix being formed on a substrate; an auxiliary pattern disposed in the opening; a color filter covering the first and second black matrixes and formed in each of a plurality of pixels; an overcoat layer formed on the color filter; a first column spacer formed on the overcoat layer so as to correspond to the first black matrix; and a second column spacer formed above the auxiliary pattern so as to correspond to the second black matrix.
Abstract:
A liquid crystal display includes a substrate and a display region on the substrate. The display region has one or more gate lines; a gate insulating layer; a semiconductor layer; one or more pairs of source and drain electrodes, each pair being one source electrode and one corresponding drain electrode; and one or more data lines, each comprising one or more of the source electrodes. A passivation layer overlies the data lines and the drain electrodes and has a plurality of contact holes; and one or more color filters overlie the passivation layer and have a plurality of through holes. In the display region, in top view, the semiconductor layer has the same shape as the data lines and the drain electrodes except over each region between each source and corresponding drain electrode, and the contact holes' edges are aligned with the through holes' edges.