Abstract:
A display device includes a display panel including a first pixel, a second pixel, and a third pixel, a scan driver configure to provide a scan signal to the first through the third pixels, a data driver which provides a data signal to the first through the third pixels, a reference voltage generator which provides a first reference voltage that compensates a degradation of a first driving transistor, a second reference voltage that compensates a degradation of a second driving transistor, and a third reference voltage that compensates a degradation of a third driving transistor, and a timing controller which generates a control signal that controls the scan driver, the data driver, and the reference voltage generator.
Abstract:
A liquid crystal display includes first and second insulating substrates facing to each other, and a plurality of pixels comprising a plurality of rows and a plurality of columns and divided into a first pixel group comprising only the pixels on a first row and a second pixel group comprising each of the remaining pixels on second to last rows. The pixels of the first pixel group have a first opening ratio, and the pixels of the second pixel group have a second opening ratio different from the first opening ratio. The first opening ratio is smaller than the second opening ratio, and the first opening ratio is about 60% to about 80% of the second opening ratio; and the pixels of the first pixel group but not the pixels of the second pixel group have a light interception pattern in an opening portion.
Abstract:
A liquid crystal display according to an embodiment of the present invention includes: a first substrate; a plurality of color filters formed on the first substrate and arranged in a matrix with an island shape; a plurality of pixel electrodes formed on the color filters; and a capacitor disposed between neighboring color filters in a column direction among the color filters, wherein two terminals forming the capacitor are disposed at a portion outside a position overlapping the color filters.
Abstract:
A display panel is disclosed. The display panel includes a substrate, a plurality of first unit pixel and a plurality of second unit pixel. The substrate includes a first region and a second region extending in a first direction. The plurality of first unit pixels is disposed in the first region of the substrate. The first unit pixel has a first area. The plurality of second unit pixel is disposed in the second region of the substrate. The second unit pixel has a second area which is smaller than the first area.
Abstract:
An organic light-emitting display apparatus includes an emission pixel in a display area and a spare pixel circuit in a repair area outside the display area. The emission pixels includes a plurality of sub emission pixels each including a driving unit for generating a driving current corresponding to input data signals and an emission device for emitting light by using the driving current. The spare pixel circuit is coupled to a repair line that is coupled to the emission device of one of the sub emission pixels. The spare pixel circuit includes a plurality of driving transistors corresponding to the plurality of sub emission pixels.
Abstract:
In an organic light-emitting display device and a method of manufacturing the same, the organic light-emitting display device includes: a silicon layer formed on a substrate; and a thin film transistor (TFT) and an organic light-emitting device that are formed on the silicon layer. The silicon layer comprises a conductive doping silicon portion for forming a part of an active layer included in the TFT and an insulating intrinsic silicon portion surrounding the doping silicon portion. According to the organic light-emitting display device of the present invention, manufacturing costs may be reduced due to a reduction in the number of masks, and the manufacturing process of the organic light-emitting display device may be simplified.
Abstract:
A liquid crystal display includes an array of pixels. Each pixel is divided into a first sub-pixel and a second sub-pixel, and different data voltages are separately applied to (or evolved at) the two sub-pixels, thereby enhancing the lateral side visibility. Each sub-pixel includes a sub-pixel electrode (connected to the drain electrode of a sub-pixel's switching element) overlapped with the sub-pixel's storage electrode. A first predetermined voltage is applied to the first sub-pixel and second predetermined voltage is applied the second sub-pixel, and thus the first sub-pixel electrode may receive a voltage lower than the voltage of the second sub-pixel electrode. The first sub-pixel electrode may be larger in area than the second sub-pixel electrode. The overlapping area between the first drain electrode and the storage electrode of a first sub-pixel may be larger than the overlapping area between the drain electrode and the storage electrode of a second sub-pixel. Thus the kickback voltage of the first sub-pixel may be substantially the same as the kickback voltage of the second sub-pixel.
Abstract:
A scan driving device includes: a first node transmitted with a clock signal input to a first clock signal input terminal; a second node transmitted with an input signal according to a clock signal input to a second clock signal input terminal; a first transistor transmitting a power source voltage to an output terminal according to a voltage of the first node; a second transistor formed to transmit the clock signal input to the third clock signal input terminal to the output terminal according to the voltage of the second node; and a dummy transistor formed to transmit the clock signal input to the third clock signal input terminal to the output terminal according to the voltage of the second node. One of the second transistor and the dummy transistor is cut off.
Abstract:
A display device includes a display panel including a reference voltage providing portion configured to apply a first reference voltage from a first reference voltage line to a plurality of readout lines and a pixel portion having a plurality of pixels connected to the readout lines, a scan driver providing a scan signal to the pixels via a plurality of scan lines, a data driver providing a data signal to the pixels via a plurality of data lines, a readout circuit converting voltages of the readout lines to digital data, and a controller cutting off a power based on the digital data.
Abstract:
A display device includes: a display panel including a display area, and a peripheral area disposed in the vicinity of the display area; a scan driver including a plurality of stages integrated on the peripheral area; a plurality of gate lines connected to the plurality of stages, respectively; and a plurality of pixel rows in the display area and connected with the plurality of gate lines, respectively. The plurality of stages and the plurality of pixel rows are each arranged in a first direction in a line, the peripheral area includes a fan-out region between the plurality of stages and the plurality of pixel rows, and at least one of the plurality of gate lines in the fan-out region is inclined with respect to the first direction, and a second direction perpendicular to the first direction.