Abstract:
A process for spin-on coating with an organic material having a low dielectric constant, which is suitable for a substrate. A dielectric base layer capable of protecting metal is formed on the substrate, an adhesive promoter layer is formed on the dielectric base layer, and the adhesive promoter layer is baked. A solvent is then used to clean the substrate and simultaneously to dissolve a part of the adhesive promoter layer in order to flatten the adhesive promoter layer. Afterwards, a layer of an organic material with a low dielectric constant is spin-on coated on the adhesive promoter layer, and the layer of an organic material with a low dielectric constant is baked and cured.
Abstract:
A method for forming dual damascene is provided. First, a first inter-metal dielectric layer and a stop layer is formed on a substrate, and then a first photoresist pattern including a via hole and a dummy metal line is patterned and the stop layer is etched for forming via hole. Next, a second inter-metal dielectric layer is deposited and then a second photoresist pattern is patterned for forming metal line trench by etching. Afterwards, a glue layer and a metal layer are blanketed and the dual damascene structure is formed by chemical mechanical polishing.
Abstract:
A liner for a cargo container includes an expansible liner body shaped to fit a cargo space of the cargo container. The liner body includes top and bottom panels, left and right panels interconnecting the top and bottom panels, and front and rear panels. The top, bottom, left, right, front and rear panels together define an accommodation space thereamong for receiving bulk cargo. The rear panel has an outlet opening communicated with the accommodation space. Two first and second reinforcing members are secured respectively to and along the front edges of the left and right panels. Two first and second connecting members are secured respectively to and along the left and right edges of the bottom panel near the rear panel. Two left and right pulling members are mounted respectively to the first and second connecting members to pull the first and second connecting members upwardly and to raise the dead corners formed adjacent to the first and second connecting members to cause parts of the bulk cargo retaining in the dead corners to fall towards the outlet opening.
Abstract:
A semiconductor device comprises a substrate, a through-silicon via (TSV) penetrating the substrate, at least one first interconnect structure traversing the TSV from the top and dividing a region right above the TSV into several sub-regions and being configured for interconnect routing of an active device and a plurality of second interconnect structures occupying the sub-regions right above the TSV and being configured for electrically coupling the TSV to a higher-level interconnect.
Abstract:
A method for fabricating an image sensor device is disclosed. The method for fabricating an image sensor device comprises forming a photosensitive layer on a substrate. The photosensitive layer is exposed through a first photomask to form an exposed portion and an unexposed portion. The unexposed portion is partially exposed through a second photomask to form a trimmed part, wherein the second photomask comprise a first segment and a second segment that has a transmittance greater than that of the first segment. The trimmed part is removed to form photosensitive structures. The photosensitive structures are reflowed to form a first microlens and a second microlens having different heights.
Abstract:
A method for fabricating an image sensor device is disclosed. The method for fabricating an image sensor device comprises forming a photosensitive layer on a substrate. The photosensitive layer is exposed through a first photomask to form an exposed portion and an unexposed portion. The unexposed portion is partially exposed through a second photomask to form a trimmed part, wherein the second photomask comprise a first segment and a second segment that has a transmittance greater than that of the first segment. The trimmed part is removed to form photosensitive structures. The photosensitive structures are reflowed to form a first microlens and a second microlens having different heights.
Abstract:
An air gap structure substantially reduces undesired capacitance between adjacent interconnects, metal lines or other features in an integrated circuit device. The air gap extends above, and may also additionally extend below, the interconnects desired to be isolated thus minimizing fringing fields between the lines. The integrated air gap structure can be utilized in conjunction with a tungsten plug process. Also, multiple levels of the integrated air gap structure can be fabricated to accommodate multiple metal levels while always ensuring that physical dielectric layer support is provided to the device structure underlying the interconnects.
Abstract:
A method of chemical-mechanical polishing for forming a shallow trench isolation is disclosed. A substrate having a number of active regions, including a number of relatively large active regions and a number of relative small active regions, is provided. The method comprises the following steps. A silicon nitride layer on the substrate is formed. A number of shallow trenches are formed between the active regions one or more of which may constitute an alignment mark. An oxide layer is formed over the substrate, so that the shallow trenches are filled with the oxide layer. A partial reverse active mask is formed on the oxide layer. The partial reverse active mask exposes a portion of the oxide layer over the large active area and over the alignment mark. The oxide layer of each large active region and the alignment mark is removed. The partial reverse active mask is removed. The oxide layer is planarized.
Abstract:
A chemical-mechanical polishing method for polishing a copper oxide layer and a copper layer. The copper oxide layer above the copper layer is first polished using an aqueous solution having a high concentration of polishing particles/chelating agent. The copper layer is then polished using a polishing slurry having a low concentration of polishing particles/chelating agent or the polishing slurry free of polishing particles/chelating agent. Alternatively, the copper oxide layer is polished using a mixture of the aqueous solution and the polishing slurry. After the copper oxide layer is removed, the copper layer is polished using the polishing slurry alone.
Abstract:
A method of forming a dual damascene structure. A first dielectric layer and a second dielectric layer are sequentially formed over a substrate. A first photoresist layer is formed over the second dielectric layer. Photolithographic and etching operations are conducted to remove a portion of the second dielectric layer and the first dielectric layer so that a via opening is formed. A conformal third dielectric layer is coated over the surface of the second dielectric layer and the interior surface of the via opening. The conformal third dielectric layer forms a liner dielectric layer. A second photoresist layer is formed over the second dielectric layer and then the second photoresist layer is patterned. Using the patterned second photoresist layer as a mask, a portion of the second dielectric layer is removed to form a trench. The patterned second photoresist layer is removed. Conductive material is deposited over the substrate to fill the via opening and the trench. Finally, chemical-mechanical polishing is conducted to remove excess conductive material above the second dielectric layer.