Abstract:
Schottky barrier diodes use a dielectric separation region to bound an active region. The dielectric separation region permits the elimination of a guard ring in at least one dimension. Further, using a dielectric separation region in an active portion of the integrated circuit device may reduce or eliminate parasitic capacitance by eliminating this guard ring.
Abstract:
A system for multiple mode imaging is disclosed. The catadioptric system has an NA greater than 0.65, and preferably greater than 0.9, highly corrected for low and high order monochromatic aberrations. The system employs unique illumination entrances and optics to collect reflected, diffracted, and scattered light over a range of angles. Multiple imaging modes are possible by varying the illumination geometry and apertures at the pupil plane. Illumination can enter the catadioptric optical sytems using an auxiliary beamsplitter or mirror, or through the catadioptric elements at any angle from 0 to 85 degrees from vertical. The system may employ a relayed pupil plane, used to select different imaging modes, provide simultaneous operation of different imaging modes, Fourier filtering, and other pupil shaping operations.
Abstract:
A method for removing silicon dioxide residuals is disclosed. The method includes reacting a portion of a silicon dioxide layer (i.e., oxide) to form a reaction product layer, removing the reaction product layer and annealing in an environment to remove oxide residuals. The method finds application in a variety of semiconductor fabrication processes including, for example, fabrication of a vertical HBT or silicon-to-silicon interface without an oxide interface.
Abstract:
Disclosed is a bipolar complementary metal oxide semiconductor (BiCMOS) or NPN/PNP device that has a collector, an intrinsic base above the collector, shallow trench isolation regions adjacent the collector, a raised extrinsic base above the intrinsic base, a T-shaped emitter above the extrinic base, spacers adjacent the emitter, and a silicide layer that is separated from the emitter by the spacers.
Abstract:
A fuel injector includes a metering orifice disc. The metering orifice disc includes a peripheral portion, a central portion, and an orifice. The peripheral portion is with respect to a longitudinal axis and extends parallel to a base plane. The peripheral portion bounds the central portion. The central portion includes a facet that extends parallel to a plane that is oblique with respect to the base plane. The orifice penetrates the facet and extends along an orifice axis that is oblique with respect to the plane. As such, the orientation of the orifice with respect to the longitudinal axis is defined by a combination of (1) a first relationship of the plane with respect to the base plane, and (2) a second relationship of the orifice axis with respect to the plane. A method of forming a multi-facetted dimple for the metering orifice disc is also described.
Abstract:
An apparatus and method for reordering data at a data destination is provided. The apparatus and method provides dynamic, adaptive management of receive buffers in a host channel adapter while recovering on the fly the order of data sent over a medium that does not preserve order. In an exemplary embodiment, the method and apparatus provides a method and apparatus of reordering data of a data transmission received from a source device. The method and apparatus receives, in a data transfer buffer, a data packet transmitted over a connection associated with the source device and determines if the connection requires reordering of data packets. If the connection requires reordering of data packets, the data packet is transferred from the data transfer buffer to a reorder buffer and a reorder state cache is updated to reflect the transfer of the data packet to the reorder buffer. In response to receipt of a request to transfer data from the reorder buffer to the host memory, a next data packet sequence number is fetched from the reorder state cache and a position in the reorder buffer of the data associated with the next data packet sequence number entry is identified. The data is at this identified position is then transferred to the host memory.
Abstract:
A method, computer program product, and distributed data processing system for supporting RNIC (RDMA enabled NIC) switchover and switchback are provided. Using the mechanism provided in the present invention when a planned or unplanned outage occurs on a primary RNIC, all outstanding connections are switched over to an alternate RNIC, and the alternate RNIC continues communication processing. Additionally, using the mechanism provided in the present invention, connections can also be switched back.
Abstract:
A system for multiple mode imaging is disclosed. The catadioptric system has an NA greater than 0.65, and preferably greater than 0.9, highly corrected for low and high order monochromatic aberrations. The system employs unique illumination entrances and optics to collect reflected, diffracted, and scattered light over a range of angles. Multiple imaging modes are possible by varying the illumination geometry and apertures at the pupil plane. Illumination can enter the catadioptric optical system using an auxiliary beamsplitter or mirror, or through the catadioptric elements at any angle from 0 to 85 degrees from vertical. The system may employ a relayed pupil plane, used to select different imaging modes, provide simultaneous operation of different imaging modes, Fourier filtering, and other pupil shaping operations.
Abstract:
A program product for a message processing system in which messages are transmitted from source nodes to destination nodes. A transmission flow control technique is disclosed in which the source node optimistically sends control information and a data portion of a message, and wherein a destination node discards the data portion of the message if it is unable to accommodate it. The destination node, however, retains enough of the control information to identify the message to the source node, and when the destination node is subsequently able to accommodate the data portion, the destination node issues a request to the source node to retransmit the data portion of the message. Discarding of one message is followed by discards of sequential messages, until the destination node is able to accommodate the data portions of messages. The flow control technique disclosed herein is used, for example, in an environment where buffers are posted to accommodate messages at the destination node, and is particularly suited for conditions arising in multi-tasking systems where the destination node is generally assumed to be prepared to accommodate data, however, if not prepared, is likely not prepared for long periods of time.
Abstract:
The present invention provides fault contained memory partitioning in a cache coherent, symmetric shared memory multiprocessor system while enabling fault contained cache coherence domains as well as cache coherent inter partition memory regions. The entire system may be executed as a single coherence domain regardless of partitioning, and the general memory access and cache coherency traffic are distinguished. All memory access is intercepted and processed by the memory controller. Before data is read from or written to memory, the address is verified and the executed operation is aborted if the address is outside the memory regions assigned to the processor in use. Inter cache requests are allowed to pass, though concurrently the accessed memory address is verified in the same manner as the memory requests. During the corresponding inter cache response, a failed validity check for the request results in the stopping of the requesting processor and the repair of the potentially corrupted memory hierarchy of the responding processor.