Abstract:
FIG. 1 is a top, plan view of a harness for euphonium musical instrument showing our new design; FIG. 2 is a bottom plan view thereof; FIG. 3 is a left side elevational view thereof; FIG. 4 is an end elevational view thereof; FIG. 5 is a front, perspective view of a harness for euphonium musical instrument, the design being shown in use; FIG. 6 is a rear perspective view thereof; FIG. 7 is a right side perspective view thereof; and, FIG. 8 is a left side perspective view thereof. In FIGS. 1-3 of the drawings, the wavy break lines are for ease of illustration only. In FIGS. 5-8 of the drawings, the broken lines representing a human form and a musical instrument illustrate the design in use and form no part of the claim.
Abstract:
The present invention is a method for dynamically determining a blended navigation solution for a mobile platform (ex.—aircraft) via a receiver implemented on-board the platform. In the method disclosed herein, the receiver concurrently utilizes data from satellite signals obtained from a plurality of independent satellite constellations in calculating its (the receiver's) navigation solution (ex.—Position, Velocity, Time (PVT) solution), thereby overcoming weaknesses inherent in currently available systems and methods, which rely on only a single satellite constellation.
Abstract:
A calibratable communications link includes multiple parallel lines. Calibration is performed at dynamically variable and/or interruptible intervals determined by an automated mechanism. Calibration is preferably initiated responsive to a command generated by an executable software process, which initiates calibration responsive to detection of a probable impending need as indicated by, e.g., temperature change, calibrated parameter drift, error rate, etc. Calibration is also preferably initiated according to probable minimal disruption of device function, as indicated by low activity level. Furthermore, in one aspect calibration may be temporarily suspended to transmit data and then resumed.
Abstract:
Back-end-of-line (BEOL) wiring structures and inductors, methods for fabricating BEOL wiring structures and inductors, and design structures for a BEOL wiring structure or an inductor. A feature, which may be a trench or a wire, is formed that includes a sidewall intersecting a top surface of a dielectric layer. A surface layer is formed on the sidewall of the feature. The surface layer is comprised of a conductor and has a thickness selected to provide a low resistance path for the conduction of a high frequency signal.
Abstract:
At least one conductive via structure is formed from an interconnect-level metal line through a middle-of-line (MOL) dielectric layer, a shallow trench isolation structure in a top semiconductor layer, and a buried insulator layer to a bottom semiconductor layer. The shallow trench isolation structure laterally abuts at least two field effect transistors that function as a radio frequency (RF) switch. The at least one conductive via structure and the at interconnect-level metal line may provide a low resistance electrical path from the induced charge layer in a bottom semiconductor layer to electrical ground, discharging the electrical charge in the induced charge layer. The discharge of the charge in the induced charge layer thus reduces capacitive coupling between the semiconductor devices and the bottom semiconductor layer, and thus secondary coupling between components electrically disconnected by the RF switch is reduced.
Abstract:
A semiconductor structure and a method of forming the same. In one embodiment, a method of forming a silicon-on-insulator (SOI) wafer substrate includes: providing a handle substrate; forming a high resistivity material layer over the handle substrate, the high resistivity material layer including one of an amorphous silicon carbide (SiC), a polycrystalline SiC, an amorphous diamond, or a polycrystalline diamond; forming an insulator layer over the high resistivity material layer; and bonding a donor wafer to a top surface of the insulator layer to form the SOI wafer substrate.
Abstract:
Semiconductor structures and methods of manufacture semiconductors are provided which relate to heterojunction bipolar transistors. The structure includes two devices connected by metal wires on a same wiring level. The metal wire of a first of the two devices is formed by selectively forming a metal cap layer on copper wiring structures.
Abstract:
A system and method for inspection is disclosed. The design includes an objective employed for use with light energy having a wavelength in various ranges, including approximately 266 to 1000 nm, 157 nm through infrared, and other ranges. The objective includes a focusing lens group having at least one focusing lens configured to receive light, a field lens oriented to receive focused light energy from said focusing lens group and provide intermediate light energy, and a Mangin mirror arrangement positioned to receive the intermediate light energy from the field lens and form controlled light energy. Each focusing lens has a reduced diameter, such as a diameter of less than approximately 100 mm, and a maximum corrected field size of approximately 0.15 mm. An immersion substance, such as oil, water, or silicone gel, may be employed prior to passing controlled light energy to the specimen inspected.
Abstract:
Semiconductor structures and methods of manufacture semiconductors are provided which relate to heterojunction bipolar transistors. The method includes forming two devices connected by metal wires on a same wiring level. The metal wire of a first of the two devices is formed by selectively forming a metal cap layer on copper wiring structures.
Abstract:
A release mechanism for use in setting a downhole tool comprises two connectors releasably connected to one other. One of the connectors includes a material having a coefficient of thermal expansion that is different from a material included in the second connector. The difference in the coefficients of thermal expansion causes one of the connectors to expand greater than the other connector when heat is applied to one or both of the connectors. As a result of the greater expansion of one of the connectors, the connectors release from each other. Upon release, an actuator within the downhole tool is permitted to move and cause actuation or setting of the downhole tool.