Abstract:
Wafer level packages and methods of fabricating the same are provided. In one embodiment, one of the methods comprises forming semiconductor chips having a connection pad on a wafer, patterning a bottom surface of the wafer to form a trench under the connection pad, patterning a bottom surface of the trench to form a via hole exposing the bottom surface of the connection pad, and forming a connecting device connected to the connection pad through the via hole. The invention provides a wafer level package having reduced thickness, lower fabrication costs, and increased reliability compared to conventional packages.
Abstract:
A wafer level package may include a semiconductor substrate supporting an electrode pad. A first insulating layer may be provided on the semiconductor substrate. The first insulating layer may include a first opening through which the electrode pad may be exposed. A seed metal layer may be provided on an entire surface of the first insulating layer. A redistribution interconnection metal layer may be provided on the seed metal layer. A second insulating layer may be provided on the redistribution interconnection metal layer. The second insulating layer may have a second opening spaced from the first opening to expose a portion of the redistribution interconnection metal layer. The second insulating layer may surround the redistribution interconnection metal layer. An unwanted portion of seed metal layer may be removed using the second insulating layer as an etch mask.
Abstract:
Provided are a wafer level chip scale package in which a redistribution process is applied at a wafer level, a manufacturing method thereof, and a semiconductor chip module including the wafer level chip scale package. The wafer level chip scale package includes a semiconductor chip having a bonding pad, a first insulating layer disposed on the semiconductor chip so as to expose the bonding pad, a redistribution line disposed on the exposed bonding pad and the first insulating layer, a sacrificial layer disposed below a redistribution pad of the redistribution line, a second insulating layer disposed on the redistribution line so as to expose the redistribution pad and including a crack inducement hole disposed beside the sacrificial layer, and an external connection terminal attached to the redistribution pad.
Abstract:
An interconnection structure includes an integrated circuit (IC) chip having internal circuitry and a terminal to electrically connect the internal circuitry to an external circuit, a passivation layer disposed on a top surface of the IC chip, the passivation layer configured to protect the internal circuitry and to expose the terminal, an input/output (I/O) pad, where the I/O pad includes a first portion in contact with the terminal and a second portion that extends over the passivation layer, and an electroless plating layer disposed on the I/O pad.
Abstract translation:互连结构包括具有内部电路的集成电路(IC)芯片和用于将内部电路电连接到外部电路的端子,设置在IC芯片的顶表面上的钝化层,钝化层被配置为保护内部电路 以及使所述终端暴露于所述I / O焊盘包括与所述端子接触的第一部分和在所述钝化层上延伸的第二部分的输入/输出(I / O)焊盘,以及设置在所述钝化层上的无电镀层 I / O板。
Abstract:
A reinforced solder bump connector structure is formed between a contact pad arranged on a semiconductor chip and a ball pad arranged on a mounting substrate. The semiconductor chip includes at least one reinforcing protrusion extending upwardly from a surface of an intermediate layer. The mounting substrate includes at least one reinforcing protrusion extending upwardly from a ball pad, the protrusions from both the chip and the substrate being embedded within the solder bump connector. In some configurations, the reinforcing protrusions from the contact pad and the ball pad are sized and arranged to have overlapping upper portions. These overlapping portions may assume a wide variety of configurations that allow the protrusions to overlap without contacting each other including pin arrays and combinations of surrounding and surrounded elements. In each configuration, the reinforcing protrusions will tend to suppress crack formation and/or crack propagation thereby improving reliability.
Abstract:
A wafer level chip scale package may have a gap provided between a solder bump and a bump land. The gap may be filled with a gas. A method of manufacturing a wafer level chip scale package may involve forming a redistribution line having a first opening, forming a seed metal layer having a second opening including an undercut portion, and forming the gap using the first and the second openings.
Abstract:
A wafer level chip scale package capable of reducing parasitic capacitances between a rerouting and the metal wiring of a wafer, and a method for manufacturing the same are provided. An embodiment of the wafer level chip scale package includes a wafer arranged with a plurality of bonding pads and an insulating member formed on the wafer so that the bonding pads are exposed. A rerouting is further formed on the insulating member in contact with the exposed bonding pads and an external connecting terminal is electrically connected to a portion of the rerouting. Here, the insulating member overlapping the rerouting is provided with a plurality of spaces in which air is trapped.
Abstract:
A wafer level package may include a semiconductor substrate supporting an electrode pad. A first insulating layer may be provided on the semiconductor substrate. The first insulating layer may include a first opening through which the electrode pad may be exposed. A seed metal layer may be provided on an entire surface of the first insulating layer. A redistribution interconnection metal layer may be provided on the seed metal layer. A second insulating layer may be provided on the redistribution interconnection metal layer. The second insulating layer may have a second opening spaced from the first opening to expose a portion of the redistribution interconnection metal layer. The second insulating layer may surround the redistribution interconnection metal layer. An unwanted portion of seed metal layer may be removed using the second insulating layer as an etch mask.
Abstract:
A ball grid array type board on chip package may include an integrated circuit chip having an active surface that supports a plurality of contact pads. An interposer may be adhered to the active surface of the integrated circuit chip. At least one hole may be provided through the interposer to expose the contact pads. A board, which may have a first surface supporting a plurality of metal lines, may have a second surface adhered to the interposer. The board may have an opening through which the contact pads may be exposed. A plurality of bonding wires may connect the contact pads to the metal lines through the opening.
Abstract:
A wiring structure may include a pad, a conductive pattern and an insulating photoresist structure. The pad may be provided on a body and electrically connected to a circuit unit of the body. The conductive pattern may be provided on the body and may be electrically connected to the pad. The insulating photoresist structure may be provided on a surface of the conductive pattern. The insulating photoresist structure may have a contact hole through which the conductive pattern may be partially exposed. The insulating photoresist structure may be fabricated by providing a photosensitive photoresist film on the conductive layer, and patterning the photosensitive photoresist film by two photo processes.