Abstract:
A method of charging an electric vehicle includes receiving data indicative of the power source system voltage during charging, determining a maximum voltage limit of the power source, and setting the maximum voltage limit as the limiting voltage of the power source. The maximum voltage limit may be the maximum permissible value of the system voltage during the charging.
Abstract:
A mounting system including a compressible structure having a first surface, a second surface, and at least one boss hole extending through the compressible structure from the first surface to the second surface. The system further including an interior plate mounted on the first surface of the compressible structure, wherein the interior plate includes a boss protruding from the interior plate and into the boss hole of the compressible structure, and an exterior plate mounted on the second surface of the compressible structure and secured to the interior plate against the boss of the interior plate, wherein the compressible structure is compressed a predetermined amount as a function of a length of the boss.
Abstract:
Systems and methods for charging an electric bus having a charging interface on its roof may include determining that an approaching bus is supposed to be charged at the charging station, lowering the charging head of the charging station to land on the roof of the bus, and moving the bus with the charge head on its roof to engage the charging head with the charging interface.
Abstract:
A control unit of an electric vehicle receives a signal indicative of an operator desired torque and sends a signal to the traction motor to output a value of torque that is the algebraic sum of the operator desired torque and a torque modification factor calculated by the control unit. The control unit calculates the torque modification factor from an efficiency map of the motor which indicates the efficiency of the motor as a function of its output torque and rotational speed.
Abstract:
A vehicle charging system comprises a plurality of retractable conductor bars in a housing of a vehicle. The plurality of conductor bars includes a positive conductor bar and a negative conductor bar. Individual conductor bars of the plurality are electrically isolated from one another. The vehicle charging system further comprises a charging system having a receiver mounted on a support structure. The receiver comprises a plurality of electrical contact members in electrical communication with a power source. The receiver is configured to bring individual conductor bars of the plurality in contact with the electrical contact members for charging an energy storage device of the vehicle.
Abstract:
The invention provides for an energy storage system that has a first plurality of battery cells that each are capable of a first C-rate. The plurality of battery cells can be charged at an equivalent rate on a kWh/minute basis as a second plurality of battery cells that each are capable of second C-rate, with the second C-rate being higher than the first C-rate. The first plurality of battery cells may have an energy storage capacity which is approximately twice the energy storage capacity for the second plurality of cells.
Abstract:
A mounting system including a compressible structure having a first surface, a second surface, and at least one boss hole extending through the compressible structure from the first surface to the second surface. The system further including an interior plate mounted on the first surface of the compressible structure, wherein the interior plate includes a boss protruding from the interior plate and into the boss hole of the compressible structure, and an exterior plate mounted on the second surface of the compressible structure and secured to the interior plate against the boss of the interior plate, wherein the compressible structure is compressed a predetermined amount as a function of a length of the boss.
Abstract:
This disclosure provides systems and methods for charging a vehicle. A vehicle and charging station can be designed such that an electric or hybrid vehicle can operate in a fashion similar to a conventional vehicle by being opportunity charged throughout a known route.
Abstract:
The invention provides for a high occupancy or heavy-duty vehicle with a battery propulsion power source, which may include lithium titanate batteries. The vehicle may be all-battery or may be a hybrid, and may have a composite body. The vehicle battery system may be housed within the floor of the vehicle and may have different groupings and arrangements.
Abstract:
An embodiment of the invention provides a method of charging an energy storage system for an electric vehicle. The method includes determining the estimated consumption for a specific route of the electric vehicle at different times and setting a target end point for the energy storage system based upon a minimum state of charge level for the energy storage system. The method further includes determining charge set points for the energy storage system based upon the target end point and the determined estimated consumption and determining the actual end point of the energy storage system after operation of the electric vehicle on the given route. The method also includes comparing the actual end point to the target end point and determining the difference in state of charge for the energy storage system between the actual end point and the target end point. In addition, the method includes using the difference between the actual end point and the target end point to adjust the charge set points for the energy storage system.