Optimized Heteroepitaxial Growth of Semiconductors

    公开(公告)号:US20230033788A1

    公开(公告)日:2023-02-02

    申请号:US17937787

    申请日:2022-10-04

    发明人: Vladimir Tassev

    摘要: A method of performing heteroepitaxy comprises exposing a substrate to a carrier gas, a first precursor gas, a Group II/III element, and a second precursor gas, to form a heteroepitaxial growth of one of GaAs, AlAs, InAs, GaP, InP, ZnSe, GaSe, CdSe, InSe, ZnTe, CdTe, GaTe, HgTe, GaSb, InSb, AlSb, CdS, GaN, and AlN on the substrate; wherein the substrate comprises one of GaAs, AlAs, InAs, GaP, InP, ZnSe, GaSe, CdSe, InSe, ZnTe, CdTe, GaTe, HgTe, GaSb, InSb, AlSb, CdS, GaN, and AlN; wherein the carrier gas is Hz, wherein the first precursor is HCl, the Group II/III element comprises at least one of Zn, Cd, Hg, Al, Ga, and In; and wherein the second precursor is one of AsH3 (arsine), PH3 (phosphine), H2Se (hydrogen selenide), H2Te (hydrogen telluride), SbH3 (hydrogen antimonide), H2S (hydrogen sulfide), and NH3 (ammonia). The process may be an HVPE (hydride vapor phase epitaxy) process.

    MANUFACTURING APPARATUS FOR GROUP-III NITRIDE CRYSTAL AND MANUFACTURING METHOD FOR GROUP-III NITRIDE CRYSTAL

    公开(公告)号:US20220411962A1

    公开(公告)日:2022-12-29

    申请号:US17848927

    申请日:2022-06-24

    摘要: A manufacturing apparatus for a group-III nitride crystal, the manufacturing apparatus includes: a raw material chamber that produces therein a group-III element oxide gas; and a nurturing chamber in which a group-III element oxide gas supplied from the raw material chamber and a nitrogen element-containing gas react therein to produce a group-III nitride crystal on a seed substrate, wherein an angle that is formed by a direction along a shortest distance between a forward end of a group-III element oxide gas supply inlet to supply the group-III element oxide gas into the nurturing chamber and an outer circumference of the seed substrate placed in the nurturing chamber, and a surface of the seed substrate is denoted by “θ”, wherein a diameter of the group-Ill element oxide gas supply inlet is denoted by “S”, wherein a distance between a surface, on which the seed substrate is placed, of a substrate susceptor that holds the seed substrate and a forward end of a first carrier gas supply inlet to supply a first carrier gas into the nurturing chamber is denoted by “L1”, wherein a distance between the forward end of the first carrier gas supply inlet and the forward end of the group-III element oxide gas supply inlet is denoted by “M1”, wherein a diameter of the seed substrate is denoted by “k”, and wherein following Eqs. (1) to (4), 0°

    MANUFACTURING APPARATUS FOR GROUP-III COMPOUND SEMICONDUCTOR CRYSTAL

    公开(公告)号:US20220403547A1

    公开(公告)日:2022-12-22

    申请号:US17837364

    申请日:2022-06-10

    摘要: The manufacturing apparatus for a group-III compound semiconductor crystal according to the present disclosure comprises a reaction container. The reaction container has a raw material reaction section, a crystal growth section, and a gas flow channel. The raw material reaction section has a raw material reaction chamber, and a raw material gas nozzle. The crystal growth section has a substrate supporting member, and reactive gas nozzles. The gas flow channel includes a first flow channel, a second flow channel, and a connection portion. The first flow channel has a first opening, and the second flow channel has a second opening. The area of the second opening is configured to be larger than the area of the first opening. The connection portion connects the first opening and the second opening with each other. The gas flow channel forms a gas flow path in the reaction container. The substrate supporting member is disposed inside the gas flow path and located on the downstream side of the first opening.

    GALLIUM NITRIDE SINGLE CRYSTAL BASED ON A SCALMGO4 SUBSTRATE AND PREPARATION METHOD THEREOF

    公开(公告)号:US20220372652A1

    公开(公告)日:2022-11-24

    申请号:US17761607

    申请日:2021-04-27

    摘要: The present invention provides a preparation method of a gallium nitride single crystal based on a ScAlMgO4 substrate, comprising following steps: (1) providing a ScAlMgO4 substrate; (2) growing a buffer layer on a surface of the ScAlMgO4 substrate; (3) annealing the buffer layer; (4) growing a GaN crystal on the buffer layer; (5) performing cooling, so that the GaN crystal is automatically peeled off from the ScAlMgO4 substrate. The present invention does not need to use a complex MOCVD process for GaN deposition and preprocessing to make a mask or a separation layer, which effectively reduces production costs; compared with traditional substrates such as sapphire, it has higher quality and a larger radius of curvature, and will not cause a problem of OFFCUT non-uniformity for growing GaN over 4 inches; finally, the present invention can realize continuous growth into a crystal bar with a thickness of more than 5 mm, which further reduces the costs.