Abstract:
A powertrain includes a motor-generator and an auxiliary electric system. The powertrain also includes a first energy storage device disposed in a parallel electrical relationship with a motor-generator and an auxiliary electric system. Additionally, the powertrain includes a first switching device selectively transitionable between a first open state to electrically disconnect the first energy storage device from at least one of the motor-generator and the auxiliary electric system, and a first closed state to electrically connect the first energy storage device to at least one of the motor-generator and the auxiliary electric system. The motor-generator and the auxiliary electric system are operable regardless of the first switching device being in the first open and closed states.
Abstract:
The inertia drive consists of a clutch subassembly including an input head shaft, a clutch plate stack, six clutch springs, and a clutch housing; and a screw shaft/pinion subassembly including a screw shaft, a pinion and a stop nut. Spline engagements and snap rings are used to couple the clutch housing and stop nut to the screw shaft. The use of splined engagements and snap rings eliminates the need for stop nuts to be threaded onto the screw shaft, reducing manufacturing cost and increasing durability. The use of splined engagements for coupling the screw shaft to the clutch housing and the stop nut to the screw shaft also allows both the clutch housing and stop nuts to be radially positioned on the screw shaft with incremental adjustability to selectively orientate the pinion relative to both the clutch housing and the stop nut.
Abstract:
A starter relay connects a battery with a starter motor of an engine when in a closed state and disconnects the starter motor from the battery when in an open state. A switching device provides current to the starter relay when in a closed state and disables current flow to the starter relay when in an open state. For an engine startup event, a switch control module: transitions the switching device to the closed state for a first predetermined period; transitions the switching device to the open state for a second predetermined period after the first predetermined period; and transitions the switching device to the closed state for a third period after the second predetermined period. The starter relay remains in the open state during the first predetermined period and transitions to the closed state when the switching device is in the closed state for the third period.
Abstract:
A method is described for engaging a starting pinion of a starting device with a ring gear of an internal combustion engine, the starting pinion having a peripheral speed and the ring gear having a peripheral speed, the starting pinion being pushed forward axially along its axis of rotation, the starting pinion making contact with the ring gear at a peripheral speed which is lower than the peripheral speed of the ring gear.
Abstract:
In an aspect the invention is directed to an isolator comprising a driver that is connectable with a shaft of a device, a rotary drive member that is engageable with an endless drive member; and a first isolation spring and a second isolation spring. The first and second isolation springs are positioned such that during rotation of the driver in a first direction torque is transferred from the driver to the first rotary drive member through the first isolation spring and not through the second isolation spring, and such that during rotation of the first rotary drive member in the first direction torque is transferred from the first rotary drive member to the driver through the second isolation spring and not through the first isolation spring.
Abstract:
Method for controlling a hybrid drivetrain which has a drive engine and a dual-clutch gearbox which, to establish two power transmission paths, has a first and a second friction clutch and a first and a second component gearbox. An electric machine is connected to the second power transmission path downstream of the second friction clutch in the power flow direction. Purely electric driving operation can be realized by means of the second component gearbox assigned to the second friction clutch. In the event of a gear change in the second component gearbox during purely electric driving operation, a fill-in torque is provided. The fill-in torque is provided from inertial energy of the previously cranked, non-fired drive engine, wherein the drivetrain also has an electric starter motor, and wherein the starter motor is used to crank the drive engine.
Abstract:
A starting system for an internal combustion engine comprising a pressure medium source, means for connecting the pressure medium source to at least two of the cylinders of the engine, a starting valve in connection with each cylinder that is connected to the pressure medium source for controlling the admission of the pressure medium into the cylinder, a control unit for controlling the operation of the starting valves, and an absolute rotary encoder for determining the crank angle of the engine. The system further comprises coupling means arranged between the engine and the absolute rotary encoder for releasably coupling the encoder to the engine. The invention also concerns a method for starting an internal combustion engine and an internal combustion engine.
Abstract:
A drive train (1) of a motor vehicle has an internal combustion engine (2) with a crankshaft (6). A transmission (3) is connected downstream of the internal combustion engine (2) to drive at least one axle (5) of the motor vehicle. A starter generator (23) is assigned to the internal combustion engine (2). The starter generator (23) is attached to the crankshaft (6) by two separate drive trains (13, 22; 24, 25). One (24, 25) of the drive trains (13, 22; 24; 25) has a shiftable clutch (29) and the other (13, 22) of the drive trains (13, 22; 24, 25) has a shiftable clutch (32) or a freewheel (11) that is active during a starter mode of the starter generator (23). The drive train ensures an optimum start capability of the cold internal combustion engine and additionally permits electric boosting of the internal combustion engine.
Abstract:
Some embodiments of the invention provide a starter system including a starter, capable of being in communication with an electronic control unit. The starter can include a motor coupled to a circuit and a pinion including a plunger, and a plurality of solenoid assemblies including a plurality of biasing members. The plurality of solenoid assemblies can include at least one solenoid winding capable of moving the plunger, and at least one solenoid assembly capable of holding the plunger, and at least one solenoid assembly capable of controlling current flow to the motor. Some embodiments include a first switch coupled to the circuit that is capable of being activated by the plunger to control current flowing to at least a portion of the circuit. Some embodiments include at least two power isolation switches capable of controlling a current flow within the circuit.
Abstract:
Systems and methods for improving operation of a hybrid vehicle are presented. In one example, an engine may be started in one of two ways depending on operating conditions. In particular, the engine may be started via a lower power output electric machine or a higher power output electric machine.