Abstract:
Automatic digital sensing and compensation of frequency drift caused by temperature, aging, and/or other effects may be provided by including a compensation capacitor array and a sensing logic. The sensing logic may be configured to detect a drift in a first control signal and to provide the compensation capacitor array with a second control signal. The second control signal is configured to cause an adjustment of capacitance in the compensation capacitor array based on the detected drift in the first control signal.
Abstract:
An integrated circuit device comprises tuning signal circuitry for generating a tuning signal for calibrating a voltage controlled oscillator (VCO). The tuning signal circuitry is arranged to receive a target voltage signal that is representative of a target voltage across at least one passive element within a resonant tank circuit of a VCO that is being calibrated, generate a VCO simulation signal representative of an average voltage difference across at least one active component of the VCO that is being calibrated, and output a tuning signal based at least partly on the received target voltage signal and the generated VCO simulation signal.
Abstract:
A high-precision oscillator includes a voltage reference module which includes multiple measured Field Effect Transistors and arranged for detecting process corners for the measured Field Effect Transistors to generate a reference voltage containing process corner information of the measured Field Effect Transistors, a compensation current generating module which is arranged for receiving the reference voltage, making a temperature compensation for the reference voltage, and generating a compensation current which includes both the process compensation and temperature compensation, and a ring oscillator which is arranged for receiving the compensation current and outputting a clock with stable frequency. The high-precision oscillator designs the process compensation and the temperature compensation separately, which are adjustable due to one of them will not be influenced by the other; and frequency of its outputted clock is not influenced by process and temperature, thereby precision of the outputted clock is improved.
Abstract:
An oscillation circuit includes an oscillation amplifier circuit that causes an oscillating element to oscillate to generate an oscillation signal, and a correction circuit connected with the oscillation amplifier circuit. At least a power supply voltage is input to the oscillation amplifier circuit. The oscillation amplifier circuit has a frequency variation characteristic that the frequency of the oscillation signal varies in response to variations in the power supply voltage. The power supply voltage is input to the correction circuit. The correction circuit corrects the frequency variation characteristic by using variations in the power supply voltage. The correction circuit may include a first variable capacitance element, and the first variable capacitance element may have a capacitance-voltage characteristic by which the frequency variation characteristic is reduced.
Abstract:
Embodiments of the present invention provide a design structure and method for compensating for a change in frequency of oscillation (FOO) of an LC-tank VCO that includes a first node; second node; inductor; first capacitive network (FCN) that allows the design structure to obtain a target FOO; compensating capacitive (CCN) network that compensates for a change in the design structure's FOO; second capacitive network (SCN) that allows the design structure to obtain a desired FOO; a filter that supplies a voltage to the SCN and is coupled to the SCN; a transconductor that compensates for a change in the design structure's FOO; and a sub-circuit coupled to the SCN that generates and supplies voltage to the CCN sufficient to allow the CCN to compensate for a reduction in the design structure's FOO. The first and second nodes are coupled to the inductor, FCN, CCN, SCN, and sub-circuit.
Abstract:
A piezoelectric device package may include: a case having a plurality of terminals formed on a lower surface thereof; a piezoelectric device formed in the case; a temperature measuring device formed on the lower surface of the case and having a thin film form; and a cover member enclosing an upper portion of the case.
Abstract:
A power management apparatus and method for maintaining a substantially constant duty cycle of a reference clock signal in a multi-power oscillator, includes a first output power transistor in electrical parallel with a series arrangement of a second output power transistor and a switch, and a crystal oscillator capacitively coupled to a common gate of the first and second output power transistors, wherein a level of the reference clock signal power output is a normal power level when the switch is open and the level of the reference clock signal power output is a higher power level when the switch is closed to operate the second output power transistor in parallel with the first output power transistor.
Abstract:
The invention generally relates to phase locked loops (PLL), and more specifically to ultra-low bandwidth phase locked loops. The invention may be for example embodied in an integrated circuit implementing a phase locked loop or a method for operating a phase locked loop. The invention provides a PLL with a control stage that uses only two storage cells, a counter and a digital-to-analog (DAC) converter. In comparison to prior-art PLLs using storage cells the configuration of the invention's control stage reduces the chip area required for the PLL reduced. The invention further suggests PVT compensation mechanisms for a PLL and implementing a PLL that has lower peaking in its frequency response, which results in better settling response.
Abstract:
Embodiments of the present invention provide a design structure and method for compensating for a change in frequency of oscillation (FOO) of an LC-tank VCO that includes a first node; second node; inductor; first capacitive network (FCN) that allows the design structure to obtain a target FOO; compensating capacitive (CCN) network that compensates for a change in the design structure's FOO; second capacitive network (SCN) that allows the design structure to obtain a desired FOO; a filter that supplies a voltage to the SCN and is coupled to the SCN; a transconductor that compensates for a change in the design structure's FOO; and a sub-circuit coupled to the SCN that generates and supplies voltage to the CCN sufficient to allow the CCN to compensate for a reduction in the design structure's FOO. The first and second nodes are coupled to the inductor, FCN, CCN, SCN, and sub-circuit.
Abstract:
A voltage controlled oscillator (VCO) includes a current controlled oscillator, a voltage-to-current converter, and a sensing circuit. The sensing circuit includes a delay unit, and the sensing circuit is configured to generate a plurality of compensation control signals in response to a time delay of the delay unit. The voltage-to-current converter is configured to generate a current signal in response to a VCO control signal and the plurality of compensation control signals. The current controlled oscillator is configured to generate an oscillating signal in response to the current signal.