Abstract:
An atomic oscillator includes: an atom cell in which alkali metal atoms are accommodated; a light-emitting element that emits light beams for exciting the alkali metal atoms toward the atom cell; a shield that includes a first member, a second member, and a high thermal resistance portion and accommodates the atom cell, the first member and the second member being members having a magnetic shielding property, and the high thermal resistance portion being provided between the first member and the second member and having a thermal resistance higher than thermal resistances of the first member and the second member; a temperature control element that controls a temperature of the first member; a heater that is thermally coupled to the second member; and a light-receiving element that receives light beams passing through the atom cell.
Abstract:
An all-digital voltage monitor (ADVM) generates a multi-bit output code that changes in proportion to a voltage being monitored, by leveraging the voltage impact on a gate delay. ADVM utilizes a simple delay chain, which receives a clock-cycle-long pulse every clock cycle, such that the monitored supply voltage is sampled for one full cycle every cycle. The outputs of all delay cells of the delay chain collectively represents a current voltage state as a digital thermometer code. In AVDM, a voltage droop event thus results in a decrease in the output code from a nominal value, while an overshoot results in an increase in the output code.
Abstract:
A method of operating a relaxation oscillator includes determining a measure of a propagation delay of a detection device of a relaxation oscillator and increasing a charging rate of a capacitor device of the relaxation oscillator for a time duration based on the determined measure of the propagation delay.
Abstract:
Embodiments of the present disclosure include a microcontroller with a frequency test circuit, a device-under-test (DUT) input, and a calculation engine circuit. The calculation engine circuit is configured to compare a measured frequency from the frequency test circuit measured from the DUT input to a reference frequency stored in memory, and, based on the comparison, adjust frequency of the DUT generating the DUT input.
Abstract:
An oscillator using a supply regulation loop and a method of operating the oscillator are provided. The oscillator includes a reference voltage generator configured to generate reference voltages from a supply voltage, a supply regulation loop circuit including a first operational amplifier and a transistor, the first operational amplifier being configured to receive a first reference voltage of the reference voltages, and the transistor being connected to an output terminal of the first operational amplifier, and a frequency locked loop (FLL) circuit configured to generate a clock signal, based on an input voltage determined based on a current flowing in the transistor and a second reference voltage of the reference voltages, wherein the first operational amplifier may include an input terminal configured to receive the first reference voltage and to receive negative feedback from the transistor, and the output terminal being configured to generate an output voltage independent of noise of the supply voltage.
Abstract:
A system, method and apparatus for tuning an internal oscillator to a desired frequency F1 is shown and uses an RC delay element that comprises a resistor, a capacitor and a comparator. The method includes receiving a clock signal from an oscillator to be tuned, triggering charging of the RC delay element, and N clock cycles after triggering the charging, the method determines whether the charge on the precision RC delay element is higher than or lower than a reference voltage. Correction to the clock frequency is based on the results.
Abstract:
A CR oscillation circuit includes inverters forming a loop for circulation of a signal, CR time constant circuits inserted into the loop for delaying the signal, each circuit having a capacitor, a plurality of resistance elements, and a transmission gate that selects an arbitrary resistance element of the plurality of resistance elements as a charge and discharge path of the capacitor, and a gate voltage generation circuit as means for outputting a gate voltage for controlling ON/OFF of each transmission gate that outputs a constant voltage in conjunction of a threshold voltage of a field-effect transistor as a gate voltage for turning ON the transmission gate.
Abstract:
Oscillator devices and corresponding methods are disclosed. In some embodiments an apparatus includes an oscillator circuit arrangement, a frequency variable resistor circuit coupled to an output of the oscillator circuit arrangement and a reference resistor circuit. The apparatus further includes a sample and hold circuit, wherein a first input of the sample and hold circuit is coupled to an output of the reference resistor circuit and a second input of the sample and hold circuit is coupled to an output of the frequency variable resistor circuit, wherein an output of the sample and hold circuit is coupled with an input of the oscillator circuit arrangement.
Abstract:
A clock generator comprises a free-running oscillator and a tunable frequency synthesizer. The free-running oscillator has an output for providing an oscillator clock signal. The tunable frequency synthesizer is coupled to the free-running oscillator and provides a clock output signal in response to the oscillator clock signal and a frequency control signal. The frequency control signal corresponds to a measured characteristic of the free-running oscillator.
Abstract:
Disclosed are a device and a method for comparing a detected frequency signal (first frequency signal) and a second frequency signal which is obtained by delaying the detected frequency, to determine whether the frequency transitioned to a predetermined area on high frequency side or reached a predetermined value on the upward direction side. The frequency detection device (1) comprises: a delayed signal output circuit (11) that outputs a second frequency signal (F2) obtained by delaying the first frequency signal (F1), which has a frequency that changes over time, by a set period (Δi); and a determination circuit (12), which inputs the first frequency signal (F1) and the second frequency signal (F2), determines whether or not the cycle of the first frequency signal (F1) is included in the cycle of the second frequency signal (F2) and/or whether or not the cycle of the second frequency signal (F2) is included in the cycle of the first frequency signal (F1), and outputs a determination signal.