Abstract:
An apparatus for imaging or fabrication using charged particles, the apparatus including: a charged particle source configured to generate a charged particle beam of ions or electrons; a sample holder mounted relative to the charged particle source to hold a sample in the charged particle beam for the imaging or fabrication; and an optical source system configured to generate an optical beam, wherein the optical source system is mounted relative to the sample holder to direct the optical beam onto the sample to modify an electric charge of the sample during the imaging or fabrication to improve spatial resolution of the imaging or fabrication.
Abstract:
A method of mitigating the effects of environmental pressure variation while using a charged particle microscope is described. The charged particle microscope equipped with a barometric pressure sensor and an automatic controller configured to use the signal from the barometric sensor as an input to a control procedure to compensate for a relative positional error between the charged particle beam and the specimen holder.
Abstract:
A system comprises an electron beam directed toward a three-dimensional object with one tilting angle and at least two azimuth angles, a detector configured to receive a plurality of scanning electron microscope (SEM) images from the three-dimensional object and a processor configured to calculate a height and a sidewall edge of the three-dimensional object.
Abstract:
Examining a sample in a charged-particle microscope of a scanning transmission type includes: Providing a beam of charged particles that is directed from a source through an illuminator so as to irradiate the sample; Providing a detector for detecting a flux of charged particles traversing the sample; Causing said beam to scan across a surface of the sample, and recording an output of the detector as a function of scan position, resulting in accumulation of a charged-particle image of the sample, Embodying the detector to comprise a plurality of detection segments; Combining signals from different segments of the detector so as to produce a vector output from the detector at each scan position, and compiling this data to yield a vector field; and Mathematically processing said vector field by subjecting it to a two-dimensional integration operation, thereby producing an integrated vector field image.
Abstract:
A charged particle beam apparatus includes a charged particle beam source which irradiates a sample with a charged particle beam, an electromagnetic lens, a lens control electric source for controlling strength of a convergence effect of the electromagnetic lens; and a phase compensation circuit which is connected to the lens control electric source in parallel with the electromagnetic lens, and controls a lens current at the time of switching the strength of the convergence effect of the electromagnetic lens such that the lens current monotonically increases or monotonically decreases.
Abstract:
An electron microscope is disclosed which has a laser-driven photocathode and an arbitrary waveform generator (AWG) laser system (“laser”). The laser produces a train of temporally-shaped laser pulses of a predefined pulse duration and waveform, and directs the laser pulses to the laser-driven photocathode to produce a train of electron pulses. An image sensor is used along with a deflector subsystem. The deflector subsystem is arranged downstream of the target but upstream of the image sensor, and has two pairs of plates arranged perpendicular to one another. A control system controls the laser and a plurality of switching components synchronized with the laser, to independently control excitation of each one of the deflector plates. This allows each electron pulse to be directed to a different portion of the image sensor, as well as to be provided with an independently set duration and independently set inter-pulse spacings.
Abstract:
Methods, apparatuses, and systems for slice and view processing of samples with dual beam systems. The slice and view processing includes exposing a vertical wall of a trench formed in a sample surface; capturing a first image of the wall by interrogating the wall with an interrogating beam while the wall is at a first orientation relative to the beam; capturing a second image of the wall by interrogating the wall with the beam while the wall is at a second orientation relative to the beam, wherein first distances in the first image between a reference point and surface points on the wall are different than second distances in the second image between the reference point and the surface points; determining elevations of the surface points using the first distances and the second distances; and fitting a curve to topography of the wall using the elevations.
Abstract:
Methods, apparatuses, and systems for slice and view processing of samples with dual beam systems. The slice and view processing includes exposing a vertical wall of a trench formed in a sample surface; capturing a first image of the wall by interrogating the wall with an interrogating beam while the wall is at a first orientation relative to the beam; capturing a second image of the wall by interrogating the wall with the beam while the wall is at a second orientation relative to the beam, wherein first distances in the first image between a reference point and surface points on the wall are different than second distances in the second image between the reference point and the surface points; determining elevations of the surface points using the first distances and the second distances; and fitting a curve to topography of the wall using the elevations.
Abstract:
An object of the present invention is to provide a method and an apparatus capable of measuring a potential of a sample surface by using a charged particle beam, or of detecting a compensation value of a variation in an apparatus condition which changes due to sample charging, by measuring a sample potential caused by irradiation with the charged particle beam. In order to achieve the object, a method and an apparatus are provided in which charged particle beams (2(a), 2(b)) emitted from a sample (23) are deflected by a charged particle deflector (33) in a state in which the sample (23) is irradiated with a charged particle beam (1), and information regarding a sample potential is detected by using a signal obtained at that time.
Abstract:
A charged particle radiation apparatus includes a control device that switches between a first charged particle beam and a second charged particle beam, the first charged particle beam being scanned to acquire an image and a waveform signal, the second charged particle beam being scanned over a sample before the scan of the first charged particle beam and used to charge the sample more than the first charged particle beam; wherein the control device is configured to acquire at least one of signal waveform data and image data about a pattern formed on the sample in accordance with a scan performed on the sample by the second charged particle beam, and to stop, when the acquired data has proved to be indicative of a predetermined state, the scan of the second charged particle beam.