Abstract:
Charged-particle-beam (CPB) mapping projection-optical systems and adjustment methods for such systems are disclosed that can be performed quickly and accurately. In a typical system, an irradiation beam is emitted from a source, passes through an irradiation-optical system, and enters a Wien filter (“E×B”). Upon passing through the E×B, the irradiation beam passes through an objective-optical system and is incident on an object surface. Such impingement generates an observation beam that returns through the objective-optical system and the E×B in a different direction to a detector via an imaging-optical system. An adjustment-beam source emits an adjustment beam used for adjusting and aligning the position of, e.g., the object surface and/or the Wien's condition of the E×B. The adjustment beam can be off-axis relative to the objective-optical system. For such adjusting and aligning, fiducial marks (situated, e.g., in the plane of the object surface) can be used that are optimized for the CPB-optical system and the off-axis optical system. Desirably, the image formed on the detector when electrical voltage and current are not applied to the E×B is in the same position as the image formed on the detector when electrical voltage and current are applied to the E×B. Also provided are “evaluation charts” for use in such alignments that do not require adjustment of the optical axis of the irradiation-optical system, and from which the kinetic-energy distribution of the emitted adjustment beam is stable.
Abstract:
A pattern inspecting method and apparatus for inspecting a defect or defective candidate of patterns on a sample includes picking up an image of a sample by shifting a sampling position on the sample, measuring geometric distortion in an image of a standard sample, beforehand, and defining a size for which the measured geometric distortion is neglectable, obtaining a first image of the sample and a second image to be compared with the first image, dividing the first image and the second stage into images of a division unit having a size not greater than the defined size, comparing a divided image of the first image with a divided image of the second image, and for calculating a difference in gradation values between both of the divided images. The defect or the defect candidate of the sample is extracted in accordance with the difference in the gradation values.
Abstract:
A method and system for probing with electrical test signals on an integrated circuit specimen using a scanning electron microscope (SEM) positioned for observing a surface of the specimen exposing electrically conductive terminals on the specimen. A carrier is provided for supporting the specimen in relation to the scanning electron microscope while a computer acquires an image identifying conductive path indicia of the surface of the specimen from the scanning electron microscope. A motorized manipulator remotely controlled by the computer manipulates a plurality of probes positionable on the surface of the specimen for conveying electrical test signals inside a vacuum chamber inner enclosure which houses the scanning electron microscope, the carrier, the motorized manipulator and the plurality of probes for analyzing the specimen in a vacuum. A feedthrough on the vacuum chamber couples electrical signals from the computer to the motorized manipulator and the plurality of probes. The computer communicates with the motorized manipulator for positioning the plurality of probes, and for applying electrical test signals to the terminals on the specimen using the image acquired by the computer to identify the electrically conductive terminals from the conductive path indicia of the surface of the specimen observed with the scanning electron microscope.
Abstract:
Inspection method, apparatus, and system for a circuit pattern, in which when various conditions which are necessary in case of inspecting a fine circuit pattern by using an image formed by irradiating white light, a laser beam, or a charged particle beam are set, its operating efficiency can be improved. An inspection target region of an inspection-subject substrate is displayed, and a designated map picture plane and an image of an optical microscope or an electron beam microscope of a designated region are displayed in parallel, thereby enabling a defect distribution and a defect image to be simultaneously seen. Item names of inspecting conditions and a picture plane to display, input, or instruct the contents of the inspecting conditions are integrated, those contents are overlapped to the picture plane and layer-displayed, and all of the item names are displayed in parallel in a tab format in the upper portion of the picture plane of the contents. When a desired item name is clicked, the picture plane is switched and the contents corresponding to the clicked item name are displayed.
Abstract:
An optical observing apparatus has a sample stage for moving a sample to a desired location to be operated upon at a target position by a charged particle beam apparatus so that the target position can be visually observed, an optical observation system for magnifying the sample for visual observation of the target position, a marking system for moving the sample based on the visual observation and marking the sample at one or more locations from which the target position can be determined without the need for further visual observation so that the target position may be located by the charged particle beam apparatus even when the target position can not be visually observed by use of the charged particle beam apparatus, and a control system for storing the target position and the location of the one or more markings together with an optical observation image and corresponding stage coordinate. In a preferred embodiment, the marking system is a laser marking system for producing a plurality of laser beams on the same optical axis, each having a different wavelength, so that an appropriate laser beam may be selected based upon the nature of the sample. The sample has an underlying structure covered by a layer of transparent material, so that the underlying structure can be visually observed by means of the optical observation system but cannot be observed by use of the charged particle beam apparatus.
Abstract:
Inspection method, apparatus, and system for a circuit pattern, in which when various conditions which are necessary in case of inspecting a fine circuit pattern by using an image formed by irradiating white light, a laser beam, or a charged particle beam are set, its operating efficiency can be improved. An inspection target region of an inspection-subject substrate is displayed, and a designated map picture plane and an image of an optical microscope or an electron beam microscope of a designated region are displayed in parallel, thereby enabling a defect distribution and a defect image to be simultaneously seen. Item names of inspecting conditions and a picture plane to display, input, or instruct the contents of the inspecting conditions are integrated, those contents are overlapped to the picture plane and layer-displayed, and all of the item names are displayed in parallel in a tab format in the upper portion of the picture plane of the contents. When a desired item name is clicked, the picture plane is switched and the contents corresponding to the clicked item name are displayed.
Abstract:
Electron microscope provided, in the direction of the longitudinal axis, with at least one electron beam generation system, a condenser and objective lens system, a specimen chamber with a specimen mount, a projection lens system with imaging screen for the purpose of transmission electron microscopy (TEM) and/or an electron detector for the purpose of scanning electron microscopy (SEM) . The microscope is used in combination with an externally positioned Raman spectrometer and an associated light source for injecting and extracting, via a window in the microscope wall, a light beam to be directed at the specimen, and specimen-related Raman radiation, respectively. In the specimen chamber, a light beam and Raman radiation guide system is provided with an optical guide to guide the light beam to--and the Raman radiation from--the specimen. The guide system and the specimen mount are displaceable with respect to one another for mutual alignment of the specimen and the optical axis of the Raman spectrometer.
Abstract:
In a scanning electron microscope, a couple of fiducial patterns which are so laid out on the X-Y stage as to be separated with a distance equivalent to the distance between the optical axis of the optical microscope and the optical axis of the electronic optical system, the image signals of these patterns are captured by the image processing circuit, the position shift of the optical axis of the optical microscope and the position shift of the optical axis of the electronic optical system with respect to the fiducial patterns are obtained by numerical calculation, and then, this position shift is used as an offset value in the actual measurement by the scanning electron microscope, which leads to an accurate positioning.
Abstract:
An exterior view examination apparatus comprising a movable sample stage provided in a sample chamber of a scanning type electron microscope; a sample mounted on the stage; and an optical microscope which can observe the sample from an exterior of the chamber, mounted on the chamber in parallel with the scanning type electron microscope, the position of a surface part of the sample (mounted on the sample stage) to be observed, measured or analyzed being preliminary defined by the optical microscope, and the sample stage being moved by a certain amount thereby to bring the sample at the center of the visual field of the electron microscope.
Abstract:
An object of the invention is to provide a charged particle beam apparatus capable of acquiring an observation image having a high contrast in a sample whose light absorption characteristic depends on a light wavelength. The charged particle beam apparatus according to the invention irradiates the sample with light, generates an observation image of the sample, changes an irradiation intensity per unit time of the light, and then generates a plurality of the observation images having different contrasts.