Abstract:
A semiconductor memory device includes memory cells for storing data, page buffers each configured to comprise a dynamic latch and a static latch on which data to be programmed in to the memory cells or data read from the memory cells are latched, and a control logic configured to store a plurality of refresh mode select codes corresponding to various refresh cycles, and refresh the dynamic latch by exchanging data between the static latch and the dynamic latch according to a refresh cycle corresponding to a selected refresh mode select code.
Abstract:
A nonvolatile memory device includes a plurality of latches for storing data, a set/reset circuit for transferring data, stored in a selected latch of the latches, to a common node, a transmission circuit for transferring the data of the common node to a first sense node, a bit line transmission circuit for transferring the data of the first sense node to a bit line, a sense circuit for transferring the data of the first sense node to a second sense node, and a discharge circuit for changing a voltage level of the common node based on the data of the second sense node.
Abstract:
Embodiments of the invention relate generally to data storage and computer memory, and more particularly, to systems, integrated circuits and methods for accessing memory in multiple layers of memory implementing, for example, third dimension memory technology. In a specific embodiment, an integrated circuit is configured to implement write buffers to access multiple layers of memory. For example, the integrated circuit can include memory cells disposed in multiple layers of memory. In one embodiment, the memory cells can be third dimension memory cells. The integrated circuit can also include read buffers that can be sized differently than the write buffers. In at least one embodiment, write buffers can be sized as a function of a write cycle. Each layer of memory can include a plurality of two-terminal memory elements that retain stored data in the absence of power and store data as a plurality of conductivity profiles.
Abstract:
A system and method for performing memory operations in a multi-plane flash memory. Commands and addresses are sequentially provided to the memory for memory operations in memory planes. The memory operations are sequentially initiated and the memory operation for at least one of the memory planes is initiated during the memory operation for another memory plane. In one embodiment, each of a plurality of programming circuits is associated with a respective memory plane and is operable to program data to the respective memory plane in response to programming signals and when it is enabled. Control logic coupled to the plurality of programming circuits generates programming signals in response to the memory receiving program commands and further generates programming enable signals to individually enable each of the programming circuits to respond to the programming signals and stagger programming of data to each of the memory planes.
Abstract:
Method and apparatus for outputting data from a memory array having a plurality of non-volatile memory cells arranged into rows and columns. In accordance with various embodiments, charge is stored in a volatile memory cell connected to the memory array, and the stored charge is subsequently discharged from the volatile memory cell through a selected column. In some embodiments, the volatile memory cell is a dynamic random access memory (DRAM) cell from a row of the cells with each DRAM cell along the row coupled to a respective column in the memory array, and each column of non-volatile memory cells comprises Flash memory cells connected in a NAND configuration.
Abstract:
A Double Data Rate (DDR) nonvolatile memory for use with a wireless device. A host processor transfers commands and data through a DDR interface of the nonvolatile memory. The DDR nonvolatile memory implements legacy flash functions while maintaining DDR behavior.
Abstract:
A NAND Flash memory device is described that can reduce bit line coupling and floating gate coupling during program and verify operations. Consecutive bit lines of an array row are concurrently programmed as a common page. Floating gate coupling during programming can therefore be reduced. Multiple verify operations are performed on separate bit lines of the page. Bit line coupling can therefore be reduced.
Abstract:
Methods and apparatus are disclosed, such as those involving a flash memory device. One such method includes storing data on memory cells on a memory block including a plurality of word lines and a plurality of memory cells on the word lines. The word lines comprising one or more bottom edge word lines, one or more top edge word lines, and intermediate word lines between the bottom and top edge word lines. The data is stored first on memory cells on the intermediate word lines. Then, a remaining portion, if any, of the data is stored on memory cells on the bottom edge word lines and/or the top edge word lines. This method enhances the life of the flash memory by preventing a premature failure of memory cells on the bottom or top edge word lines, which can be more prone to failure.
Abstract:
Provided is a method for programming a flash memory device. The method includes receiving writing data, detecting leakage bit lines of the flash memory device, and updating the received writing data in order for data corresponding to the leakage bit lines to be modified as program-inhibit data. A programming operation is performed on the flash memory device after updating the writing data.
Abstract:
Example embodiments are directed to methods, memory devices, and systems for programming a nonvolatile memory device having a charge storage layer including performing at least one unit programming loop, each unit programming loop including, applying a programming pulse to at least two pages, applying a time delay to the at least two pages, and applying a verifying pulse to the at least two pages.