Abstract:
A memory system includes a plurality of memory devices, a controller configured to control the plurality of memory devices, and at least one channel connected between the plurality of memory devices and the controller. The at least one channel includes input/output data lines and control signal lines, which are connected with the plurality of memory devices, and chip enable signal lines respectively connected to each of the plurality of memory devices, wherein the chip enable signal lines enable the plurality of memory devices independently. The controller sends a read command or a program command to one of the plurality of memory devices, and while the one of the plurality of memory devices is performing an internal read operation in response to the read command, the controller reads data from another one of the plurality of memory devices, or while the one of the plurality of memory devices is performing an internal program operation in response to the program command, the controller programs data to another one of the plurality of memory devices.
Abstract:
A non-volatile memory device includes a memory cell array which includes a plurality of non-volatile memory cells, a plurality of word lines, and a plurality of bit lines. The memory device further includes an internal data output line for outputting data read from the bit lines of the memory array, and a page buffer operatively connected between a bit line of the memory cell array and the internal data output line. The page buffer includes a sense node which is selectively connected to the bit line, a latch circuit having a latch node which is selectively connected to the sense node, a latch input path which sets a logic voltage of the latch node in the programming mode and the read mode, and a latch output path which is separate from the latch input path.
Abstract:
A nonvolatile semiconductor memory device for an efficient program of multilevel data includes a memory cell array having a plurality of banks and a cache block corresponding to each of the plurality of banks. The cache block has a predetermined data storage capacity. A page buffer is included which corresponds to each of the plurality of banks. A programming circuit programs all of the plurality of banks except a last of said banks with page data. The page data is loaded through each page buffer and programmed into each cache block such that when page data for the last bank is loaded into the page buffer, the loaded page data and the page data programmed into the respective cache blocks are programmed into respective corresponding banks.
Abstract:
Example embodiments may provide a memory device and memory data reading method. The memory device according to example embodiments may include a multi-bit cell array, an error detector which may read a first data page from a memory page in the multi-bit cell array and may detect an error-bit of the first data page, and an estimator which may identify a multi-bit cell where the error-bit is stored and may estimate data stored in the identified multi-bit cell among data of a second data page. Therefore, the memory device and memory data reading method may have an effect of reducing an error when reading data stored in the multi-bit cell and monitoring a state of the multi-bit cell without additional overhead.
Abstract:
Various read level control apparatuses and methods are provided. In various embodiments, the read level control apparatuses may include an error control code (ECC) decoding unit for ECC decoding data read from a storage unit, and a monitoring unit for monitoring a bit error rate (BER) based on the ECC decoded data and the read data. The apparatus may additionally include an error determination unit for determining an error rate of the read data based on the monitored BER, and a level control unit for controlling a read level of the storage unit based on the error rate.
Abstract:
Memory devices and/or memory programming methods are provided. A memory device may include: a memory cell array including a plurality of memory cells; a programming unit configured to apply a plurality of pulses corresponding to a program voltage to a gate terminal of each of the plurality of memory cells, and to apply a program condition voltage to a bit line connected with a memory cell having a threshold voltage lower than a verification voltage from among the plurality of memory cells; and a control unit configured to increase the program voltage during a first time interval by a first increment for each pulse, and to increase the program voltage during a second time interval by a second increment for each pulse. Through this, it may be possible to reduce a width of a distribution of threshold voltages of a memory cell.
Abstract:
A memory system comprises a multi-bit memory device and a memory controller that controls the multi-bit memory device. The memory system determines whether a requested program operation is a random program operation or a sequential program operation. Where the requested program operation is a random program operation, the memory controller controls the multi-bit memory device to perform operations according to a fine program close policy or a fine program open policy.
Abstract:
Various read level control apparatuses and methods are provided. In various embodiments, the read level control apparatuses may include an error control code (ECC) decoding unit for ECC decoding data read from a storage unit, and a monitoring unit for monitoring a bit error rate (BER) based on the ECC decoded data and the read data. The apparatus may additionally include an error determination unit for determining an error rate of the read data based on the monitored BER, and a level control unit for controlling a read level of the storage unit based on the error rate.
Abstract:
Example embodiments may relate to a method and an apparatus for reading data stored in a memory, for example, providing a method and an apparatus for controlling a reference voltage based on an error of the stored data. Example embodiments may provide a memory data detecting apparatus including a first voltage comparator to compare a threshold voltage of a memory cell with a first reference voltage, a first data determiner to determine a value of at least one data bit stored in the memory cell according to a result of the comparison, an error verifier to verify whether an error occurs in the determined value, a reference voltage determiner to determine a second reference voltage that is lower than the first reference voltage based on a result of the verification, and a second data determiner to re-determine the value of the data based on the determined second reference voltage.