Abstract:
Embodiments of thermally and chemically strengthened glass-based articles are disclosed. In one or more embodiments, the glass-based articles may include a first surface and a second surface opposing the first surface defining a thickness (t), a first CS region comprising a concentration of a metal oxide that is both non-zero and varies along a portion of the thickness, and a second CS region being substantially free of the metal oxide of the first CS region, the second CS region extending from the first surface to a depth of compression of about 0.17•t or greater. In one or more embodiments, the first surface is flat to 100 μm total indicator run-out (TIR) along any 50 mm or less profile of the first surface. Methods of strengthening glass sheets are also disclosed, along with consumer electronic products, laminates and vehicles including the same are also disclosed.
Abstract:
A stress-engineered frangible structure includes multiple discrete glass members interconnected by inter-structure bonds to form a complex structural shape. Each glass member includes strengthened (i.e., by way of stress-engineering) glass material portions that are configured to transmit propagating fracture forces throughout the glass member. Each inter-structure bond includes a bonding member (e.g., glass-frit or adhesive) connected to weaker (e.g., untreated, unstrengthened, etched, or thinner) glass member region(s) disposed on one or both interconnected glass members that function to reliably transfer propagating fracture forces from one glass member to other glass member. An optional trigger mechanism generates an initial fracture force in a first (most-upstream) glass member, and the resulting propagating fracture forces are transferred by way of inter-structure bonds to all downstream glass members. One-way crack propagation is achieved by providing a weaker member region only on the downstream side of each inter-structure bond.
Abstract:
An electrochromic device may include a working electrode that includes a high temperature stable material and nanoparticles of an active core material, a counter electrode, and an electrolyte deposited between the working electrode and the counter electrode. The high temperature stable material may prevent fusing of the nanoparticles of the active core material at temperatures up to 700° C. The high temperature stable material may include tantalum oxide. The high temperature stable material may form a spherical shell or a matrix around the nanoparticles of the active core material. A method of forming an electrochromic device may include depositing a working electrode onto a first substrate, in which the working electrode comprises a high temperature stable material and nanoparticles of an active core material, and heat tempering the working electrode and the first substrate.
Abstract:
The present invention relates to a method for manufacturing tempered glass and, more specifically, to a method for manufacturing alkali-free glass which has the thickness of 2.0 mm or less into tempered glass by means of heat treatment and surface treatment using fluosilicic acid. To this end, the present invention provides a method for manufacturing tempered glass, the method comprising: a preparation step for preparing alkali-free glass; a surface treatment step for surface-treating the alkali-free glass by means of a surface treatment solution comprising fluosilicic acid and thereby generating on the surface of the alkali-free glass a porous SiO2-rich layer of which the coefficient of thermal expansion (CTE) is smaller than the CTE of the inner part of the alkali-free glass; and a heat treatment step for heat-treating the alkali-free glass that has been surface-treated and thereby generating compressive stress on the surface of the alkali-free glass.
Abstract:
A coated article is provided which may be heat treated (e.g., thermally tempered) in certain example instances. In certain example embodiments, the coated article includes a low-emissivity (low-E) coating having a zinc stannate based layer provided over a silver-based infrared (IR) reflecting layer, where the zinc stannate based layer is preferably located between first and second silver based IR reflecting layers. The zinc stannate based layer may be provided between and contacting (i) an upper contact layer of or including Ni and/or Cr (or Ti, or TiOx), and (ii) a layer of or including silicon nitride.
Abstract:
A method of preparing an OGS touch screen is disclosed. The method includes forming a first film layer on a provided substrate, where the first film layer includes at least one hollow region and a protection film surrounding each hollow region. The method also includes tempering each hollow region by tempering the substrate, and removing the protection film on the substrate.
Abstract:
Transparent conductive coatings are polished using particle slurries in combination with mechanical shearing force, such as a polishing pad. Substrates having transparent conductive coatings that are too rough and/or have too much haze, such that the substrate would not produce a suitable optical device, are polished using methods described herein. The substrate may be tempered prior to, or after, polishing. The polished substrates have low haze and sufficient smoothness to make high-quality optical devices.
Abstract:
A laminated glazing panel (10) has at least one sheet of glass having a thickness of between 0.8 mm and 3.5 mm. The glass sheet has: a) an edge compression stress of between 20 MPa and 90 MPa; and b) a surface compressive stress at a central portion of the glass of between 2 MPa and 39 MPa. The glazing panel may be used as a laminated automotive glazing. A method of manufacturing a laminated glazing panel is also disclosed, comprising individually bending two sheets of glass and subsequently assembling and laminating the two sheets of glass together.
Abstract:
A vacuum insulating glass (IG) unit and method of making the same. At least a first edge seal portion is provided on at least one of two glass substrates prior to S tempering. When the substrate(s) are thermally tempered, the high tempering temperatures achieved cause the first seal portion to diffuse into or bond to the substrate. Thereafter, after substantial cooling of the substrate(s) and during assembly of the vacuum IG unit, a secondary heating is performed to form a hermetic edge/peripheral seal using at least the first seal portion (additional seal material(s) may be applied in certain embodiments before the secondary heating step).
Abstract:
A vacuum insulating glass (IG) unit and method of manufacturing the same. A peripheral or edge seal of a vacuum IG unit is formed utilizing microwave energy in order to enable tempered glass sheets of the IG unit to retain a significant portion of their original temper strength. In certain exemplary embodiments, the edge seal may be formed of solder glass. In certain embodiments, edge seal material may be deposited on one or both substrates prior to a thermal tempering process so that during tempering the edge seal material is permitted to diffuse into (i.e., bond to) the glass substrate(s) before it is fully tempered. This is advantageous because diffusion of certain edge seal material (e.g., solder glass or glass frit edge seal material) into tempered glass is more difficult to achieve than diffusion of the same into annealed non-tempered glass).