Abstract:
Several open-loop solutions encompass the small delay CDD codeword cycling and codeword cycling between different re-transmissions of both small and large delay CDD, and include an open-loop codeword cycling method for an SFBC+FSTD scheme, as well as its extension to SFBC+FSTD based HARQ. In one method, a plurality of information bits are encoded, scrambled and modulated to generate a plurality of modulation symbols. The plurality of modulation symbols are mapped onto the subcarriers in at least one transmission layer of a transmission resource. The modulation symbols are then precoded using a matrix for cyclic delay diversity and a set of codewords from a certain codebook to generate a plurality of precoded symbols. The codewords are cycled for every a certain number of subcarriers. Finally, the precoded symbols are transmitted via a plurality of transmission antennas.
Abstract:
A communication network includes a base station configured to wirelessly communicate first communication traffic with a first network entity using a first beam, and communicate second communication traffic with a second network entity using a second beam. Each of the first and second communication traffic includes at least one of backhaul traffic, wireless access traffic, and traffic for coordination in-between network entities.
Abstract:
A method for transmitting control information by transmitting a reference signal from a first transceiver to a second transceiver, in response to the reception of the reference signal, determining at the second transceiver a plurality of control channel elements based upon the received reference signal, jointly encoding the plurality of control channel elements at the second transceiver to generate a control signal, and transmitting the control signal from the second transceiver to the first transceiver.
Abstract:
A method and apparatus are provided for transmitting and receiving Uplink Control Information (UCI) in a wireless communication system. The method includes generating the UCI including at least one of channel quality indicator (CQI) information and hybrid automatic repeat request (HARQ) information; identifying, if the terminal is configured with a plurality of serving cells, a serving cell among the plurality of serving cells based on information on a cell index of the serving cell; and transmitting the UCI on a physical uplink shared channel (PUSCH) of the identified serving cell.
Abstract:
A system, apparatus, and method use full duplexing with polarization. A wireless communication system includes a first transceiver configured to transmit and receive wireless signals to and from at least a second transceiver. The first transceiver includes a plurality of transmitter antennas and a plurality of receiver antennas. At least one of the transmitter antennas is configured to transmit a first signal with a first polarization weight to at least the second transceiver. At least one of the receiver antennas is configured to receive a second signal with a second polarization from the second transceiver. The second polarization is cross polarized with the first polarization.
Abstract:
Resource elements from multiple code blocks are separated into different groups, and decoding the code bits of the resource elements within each group without waiting for a completed reception of a transport block to start decoding. Coded bits from multiple code blocks are separated into different groups, and the code blocks containing coded bits within each group are decoded. A first CRC is attached to the transport block and a second CRC is attached to at least one code block from the transport block. An improved channel interleaver design includes mapping from coded bits of different code blocks to modulation symbols, and mapping from modulation symbols to time, frequency, and spatial resources, to make sure each code block to get roughly the same level of protection.
Abstract:
Reliable detection of the configuration of transmit antennas includes obtaining a data for transmission, encoding the data, and modulating the data. During the modulating of the data, the data may be configured in such a way as to convey the configuration of the antennas through the modulation of the data. An antenna configuration is obtained by obtaining a representation of the antenna configuration, and masking the data with an error correcting code, where the mask corresponds to the antenna configuration.
Abstract:
A transmission resource in a time domain subframe is divided into a plurality of equal duration resource elements in a time and frequency domain, the plurality of resource elements are segregated into a plurality of resource regions, information to be transmitted is modulated to generate a sequence of modulation symbols at a transmitter, the sequence of modulation symbols is mapped into the plurality of resource elements in the plurality of resource regions, and the modulation symbols are transmitted via a plurality of antennas using the respective corresponding resource elements to a receiver. The mapping of the modulation symbols in at least one resource region is independent of a certain control channel information that is carried in the time domain subframe, and the mapping of the modulation symbols in at least another resource region is dependent upon that certain control channel information.
Abstract:
A subscriber station for use in a wireless network capable of communicating according to a multicarrier protocol determines a total average signal level across N subbands within a channel, where each subband comprises a plurality of subcarriers. The subscriber station also determines a first average signal level within a first subband. The subscriber station then transmits a channel quality indicator (CQI) feedback message to the wireless network. The CQI feedback message comprises a first data indicating the total average signal level across the N subbands and a second data indicating the first average signal level within the one subband. The first data may indicate the total average signal level as an absolute value and the second data may indicate the first average signal level relative to the total average signal level using one of two or more unequal quantization levels.
Abstract:
Asynchronous Hybrid Automatic Repeat reQuest (ARQ) process identities are transmitted in a wireless communication system. A linking scheme is established between at least two sets of process identities of two respective corresponding codewords. When a first process identity is selected from among a first set of process identities of a first codeword, a second process identity may be derived in dependence upon the first process identity and the established linking scheme. Finally, a first packet from the first codeword is transmitted using a first transmission channel indicated by the first process identity, and a second packet is transmitted from the second codeword using a second transmission channel indicated by the second process identity. In addition, a control message including only the first process identity is transmitted.