Abstract:
Disclosed are optical devices and methods of manufacturing optical devices. An optical device can include a substrate; an optical emitter chip affixed to the front surface of the substrate; and an optical sensor chip affixed to the front surface of the substrate. The optical sensor chip can include a main sensor and a reference sensor. The optical device can include an opaque dam separating the main optical sensor and the reference sensor. The optical device can include a first transparent encapsulation block encapsulating the optical emitter chip and the reference optical sensor and a second transparent encapsulation block encapsulating the main optical sensor. The optical device can include an opaque encapsulation material encapsulating the first transparent encapsulation block and the second transparent encapsulation block with a first opening above the main optical sensor and a second opening above the optical emitter chip.
Abstract:
Then optical device comprises a first member (P) and a second member (O) and, arranged between said first and second members, a third member (S) referred to as spacer. The spacer (S) comprises —one or more portions referred to as distancing portions (Sd) in which the spacer has a vertical extension referred to as maximum vertical extension; —at least two separate portions referred to as open portions (4) in which no material of the spacer is present; and —one or more portions referred to as structured portions (Sb) in which material of the spacer is present and in which the spacer has a vertical extension smaller than said maximum vertical extension. Such optical devices can be used in or as multi-aperture cameras.
Abstract:
Optoelectronic modules include an optoelectronic device and a transparent cover. A non-transparent material is provided on the sidewalls of the transparent cover, which can help reduce light leakage from the sides of the transparent cover or can help reduce stray light from entering the module. The modules can be fabricated, for example, in wafer-level processes. In some implementations, openings such as trenches are formed in a transparent wafer. The trenches then can be filled with a non-transparent material using, for example, a vacuum injection tool. When a wafer-stack including the trench-filled transparent wafer subsequently is separated into individual modules, the result is that each module can include a transparent cover having sidewalls that are covered by the non-transparent material.
Abstract:
An optical proximity sensor module includes a substrate, a light emitter mounted on a first surface of the substrate, the light emitter being operable to emit light at a first wavelength, and a light detector mounted on the first surface of the substrate, the light detector being operable to detect light at the first wavelength. The module includes an optics member disposed substantially parallel to the substrate, and a separation member disposed between the substrate and the optics member. The separation member may surround the light emitter and the light detector, and may include a wall portion that extends from the substrate to the optics member and that separates the light emitter and the light detector from one another. The separation member may be composed, for example, of a non-transparent polymer material containing a pigment, such as carbon black.
Abstract:
Various optoelectronic modules are described that include an optoelectronic device (e.g., a light emitting or light detecting element) and a transparent cover. Non-transparent material is provided on the sidewalls of the transparent cover, which, in some implementations, can help reduce light leakage from the sides of the transparent cover or can help prevent stray light from entering the module. Fabrication techniques for making the modules also are described.
Abstract:
An optical proximity sensor module includes a substrate, a light emitter mounted on a first surface of the substrate, the light emitter being operable to emit light at a first wavelength, and a light detector mounted on the first surface of the substrate, the light detector being operable to detect light at the first wavelength. The module includes an optics member disposed substantially parallel to the substrate, and a separation member disposed between the substrate and the optics member. The separation member may surround the light emitter and the light detector, and may include a wall portion that extends from the substrate to the optics member and that separates the light emitter and the light detector from one another. The separation member may be composed, for example, of a non-transparent polymer material containing a pigment, such as carbon black.