Abstract:
A multiservice communication device includes a plurality of transceivers that wirelessly transceive data with a corresponding plurality of networks in accordance with a corresponding plurality of network protocols. A control channel transceiver transceives control channel data with a remote management unit including local control data sent to the management unit and remote control data received from the management unit. A processing module processes the remote control data and generates a least one control signal in response thereto, the at least one control signal for adapting at least one of the plurality of transceivers based on the remote control data.
Abstract:
A switching module can route packets between a network fabric and a local network, both of which form a closed network such as a vehicular network. The switching module provides local network management functions, and handles packet transfers between the local network and the network fabric. The switching module uses network information, which can include information about packet content type and network topology, to determine a packet's priority, and an appropriate switching protocol to use for processing and routing packets.
Abstract:
A handheld wireless communication device (HWCD) establishes an ad hoc network comprising interconnected networks for a user. The HWCD gains access to content on a first device and controls communication of the content from the first device via the HWCD to a second device. The HWCD enables the second device to consume the content. The content may be streamed from the first device via the HWCD to the second device. The first device is a service provider network device or other network device. The access may be authenticated and/or secure. Secure access to the content is extended from the first device to the second device. The ad hoc network is configured and/or reconfigured until communication is complete. The HWCD comprises multiple wireless interfaces. The ad hoc network comprises a PAN, WLAN, WAN and/or cellular network. The HWCD may hand-off among base stations during communication of the content.
Abstract:
Dynamically splitting a job in wireless system between a processor other remote devices may involve evaluating a job that a wireless mobile communication (WMC) device may be requested to perform. The job may be made of one or more tasks. The WMC device may evaluate by determining the availability of at least one local hardware resource of the wireless mobile communication device in processing the requested job. The WMC device may apportion one or more tasks making up the requested job between the wireless mobile communication device and a remote device. The apportioning may be based on the availability of the at least one local hardware resource.
Abstract:
A mobile communication device includes a motion sensor for generating motion signals in response to motion of the mobile communication device. A motion data generation module generates motion data based on the motion signals. At least one transceiver sends the motion data to a game device in a gaming mode of operation and transceives wireless telephony data with a wireless telephony network in a telephony mode of operation.
Abstract:
A game console includes a receiver that receives motion data in response to motion of a gaming object. A trajectory generation module generates trajectory data based on the motion data and based on a motion prediction model. A processor executes a gaming application based on the trajectory data to generate display data.
Abstract:
A game console includes a receiver that receives motion data in response to motion of a gaming object. A trajectory generation module generates trajectory data based on the motion data and based on a motion prediction model. A processor executes a gaming application based on the trajectory data to generate display data.
Abstract:
A wireless power transfer system is described that includes a power station and a chargeable device. The power station transmits discovery beacons in order to detect a chargeable device within its vicinity using any available communication protocols and/or standards. Once a device is discovered, the power station can perform coil selection with the device in order to select preferred coils for power transfer. In addition, the chargeable device is capable of detecting the beacon signal and providing a response to notify the power station of its presence. The chargeable device is capable of performing its own coil selection for further optimization and includes various assistance functionality to aid a user in optimizing a connection with the power station.
Abstract:
Embodiments for a hybrid multi-touch capacitive (MTC) and active stylus touch device are provided. Embodiments enable various ways for reusing system resources to enable simultaneous detection of conducting objects in contact with the device and/or active styluses in proximity to the device. In an embodiment, receiver channels are reused in a time multiplexed manner between an MTC mode and an active stylus mode of operation. In another embodiment, the use of system resources, including receiver channels, is adjusted based on the presence/absence of conducting objects and/or active styluses. Embodiments for improving the detection of conducting objects and/or active styluses are also provided, including embodiments for reducing the interference between conducting objects and active styluses.
Abstract:
A bridge routing module can be incorporated into a closed network fabric, such as a vehicular network. The bridge routing module includes an interface circuit to be coupled to other elements of the closed network fabric, for example other bridge routing modules or switch modules. The bridge routing module includes memory to store information associating packet content types with packet routing parameters, among other things. A processing module included in the bridge routing module analyzes packets to identify the type of content carried by the packets, and determines packet routing parameters based on the packet's content type. Ingress and egress of the packet are controlled in accordance with the packet routing parameters determined by the processing module.