摘要:
In a method for growing a single crystal by bringing a seed crystal (4) into contact with a melt (2) of raw materials melted under heating in a crucible (1) a blade member (5) or a baffle member in disposed in the raw material melt (2) in the crucible (1) and a single crystal is grown by pulling up it with rotating the crucible (1) to thereby grow various single crystals including CLBO from the highly viscous raw material melt (2) as high quality and high performance crystals.
摘要:
A method of classifying particles indicated on a two-dimensional frequency distribution map into particle clusters, includes the steps of: dividing the particles into a first cluster and a second cluster by a line containing a mode coordinate of the particles, presuming a third cluster so that the first and third clusters are symmetrical with respect to the mode coordinate, calculating variance and covariance of a cluster including the first and third clusters to obtain an ellipse region surrounding the first and third clusters based on the calculated variance and covariance, and determining the particles in the obtained ellipse region as a particle cluster.
摘要:
The present invention provides a method of manufacturing Group III nitride crystals that are of high quality, are manufactured highly efficiently, and are useful and usable as a substrate that is used in semiconductor manufacturing processes. The method of manufacturing Group III nitride crystals includes: forming a first layer made of a semiconductor that is expressed by a composition formula of AlsGatIn1-s-tN (where 0nullsnull1, 0nulltnull1, and snulltnull1); forming a second layer by bringing the surface of the first layer into contact with a melt in an atmosphere including nitrogen, wherein the second layer includes greater defects in a crystal structure, such as a dislocation density for example, than those of the first layer, and the melt includes alkali metal and at least one Group III element selected from the group consisting of gallium, aluminum, and indium; and forming a third layer through crystal growth in the melt in an atmosphere including nitrogen, wherein the third layer is made of a semiconductor that is expressed by a composition formula of AluGavIn1-u-vN (where 0nullunull1, 0nullvnull1, and unullvnull1), and the third layer has less defects in a crystal structure, such as a dislocation density for example, than those of the second layer.
摘要翻译:本发明提供一种制造高品质的III族氮化物晶体的方法,其制造高效率,并且可用和用作半导体制造工艺中使用的基板。 制造III族氮化物晶体的方法包括:形成由AlsGatIn1-s-tN的组成式表示的半导体制成的第一层(其中0≤s≤1,0<= t <= 1,和 s + t <= 1); 通过使第一层的表面在包括氮气的气氛中与熔体接触而形成第二层,其中第二层在诸如位错密度的晶体结构中具有比第一层更大的缺陷, 并且熔体包括碱金属和至少一种选自镓,铝和铟的III族元素; 并且在包括氮气的气氛中通过在熔体中的晶体生长形成第三层,其中第三层由以下组成式表示的半导体制成:AlluGavIn1-u-vN(其中0 <= u <= 1,0 <= v <= 1,u + v <= 1),并且第三层在诸如位错密度的晶体结构中具有比第二层更少的缺陷。
摘要:
The present invention provides a manufacturing method that allows a Group III nitride substrate with a low dislocation density to be manufactured, and a semiconductor device that is manufactured using the manufacturing method. The manufacturing method includes, in an atmosphere including nitrogen, allowing a Group III element and the nitrogen to react with each other in an alkali metal melt to cause generation and growth of Group III nitride crystals. In the manufacturing method, a plurality of portions of a Group III nitride semiconductor layer are prepared, selected as seed crystals, and used for at least one of the generation and the growth of the Group III nitride crystals, and then surfaces of the seed crystals are brought into contact with the alkali metal melt.
摘要:
A method for analyzing platelets is described. In the method, a measurement sample is prepared by mixing a sample and a dye for staining platelets. The dye is selected from the group consisting of Capri blue, Nile blue and brilliant cresyl blue. Upon irradiating cells in the measurement sample with light, scattered light and fluorescence emitted from the cells are measured. The platelets are detected on the basis of the scattered light and the fluorescence. A reagent kit and a reagent are also described.
摘要:
A method for producing a high-quality group-III element nitride crystal at a high crystal growth rate, and a group-III element nitride crystal are provided. The method includes the steps of placing a group-III element, an alkali metal, and a seed crystal of group-III element nitride in a crystal growth vessel, pressurizing and heating the crystal growth vessel in an atmosphere of nitrogen-containing gas, and causing the group-III element and nitrogen to react with each other in a melt of the group-III element, the alkali metal and the nitrogen so that a group-III element nitride crystal is grown using the seed crystal as a nucleus. A hydrocarbon having a boiling point higher than the melting point of the alkali metal is added before the pressurization and heating of the crystal growth vessel.
摘要:
Materials of a nitride single crystal of a metal belonging to III group and a flux are contained in a crucible, which is contained in a reaction container, the reaction container is contained in an outer container, the outer container is contained in a pressure container, and nitrogen-containing atmosphere is supplied into the outer container and melt is generated in the crucible to grow a nitride single crystal of a metal belonging to III group. The reaction container includes a main body containing the crucible and a lid. The main body includes a side wall having a fitting face and a groove opening at the fitting face and a bottom wall. The lid has an upper plate part including a contact face for the fitting face of the main body and a flange part extending from the upper plate part and surrounding an outer side of said side wall.
摘要:
An object of the present invention is to effectively add Ge in the production of GaN through the Na flux method. In a crucible, a seed crystal substrate is placed such that one end of the substrate remains on the support base, whereby the seed crystal substrate remains tilted with respect to the bottom surface of the crucible, and gallium solid and germanium solid are placed in the space between the seed crystal substrate and the bottom surface of the crucible. Then, sodium solid is placed on the seed crystal substrate. Through employment of this arrangement, when a GaN crystal is grown on the seed crystal substrate through the Na flux method, germanium is dissolved in molten gallium before formation of a sodium-germanium alloy. Thus, the GaN crystal can be effectively doped with Ge.
摘要:
It is disclosed an apparatus for growing a nitride single crystal using a flux containing an easily oxidizable substance. The apparatus has a crucible for storing the flux; a pressure vessel for storing the crucible and charging an atmosphere containing at least nitrogen gas; furnace materials disposed within the pressure vessel and out of the crucible; heaters attached to the furnace material; and alkali-resistant and heat-resistant metallic layers covering the furnace material.
摘要:
A GaN single crystal 20 is grown on a crystal growth surface of a seed crystal (GaN layer 13) through the flux method in a nitrogen (N2) atmosphere at 3.7 MPa and 870° C. employing a flux mixture including Ga, Na, and Li at about 870° C. Since the back surface of the template 10 is R-plane of the sapphire substrate 11, the template 10 is readily corroded or dissolved in the flux mixture from the back surface thereof. Therefore, the template 10 is gradually dissolved or corroded from the back surface thereof, resulting in separation from the semiconductor or dissolution in the flux. When the GaN single crystal 20 is grown to a sufficient thickness, for example, about 500 μm or more, the temperature of the crucible is maintained at 850° C. to 880° C., whereby the entirety of the sapphire substrate 11 is dissolved in the flux mixture.