Abstract:
Spin-transfer torque memory includes a composite free magnetic element, a reference magnetic element having a magnetization orientation that is pinned in a reference direction, and an electrically insulating and non-magnetic tunneling barrier layer separating the composite free magnetic element from the magnetic reference element. The free magnetic element includes a hard magnetic layer exchanged coupled to a soft magnetic layer. The composite free magnetic element has a magnetization orientation that can change direction due to spin-torque transfer when a write current passes through the spin-transfer torque memory unit.
Abstract:
Apparatus and associated method for writing data to a non-volatile memory cell, such as spin-torque transfer random access memory (STRAM). In accordance with some embodiments, a resistive sense element (RSE) has a heat assist region, magnetic tunneling junction (MTJ), and pinned region. When a first logical state is written to the MTJ with a spin polarized current, the pinned and heat assist regions each have a substantially zero net magnetic moment. When a second logical state is written to the MTJ with a static magnetic field, the pinned region has a substantially zero net magnetic moment and the heat assist region has a non-zero net magnetic moment.
Abstract:
Flux-closed spin-transfer torque memory having a specular insulative spacer is disclosed. A flux-closed spin-transfer torque memory unit includes a multilayer free magnetic element including a first free magnetic layer anti-ferromagnetically coupled to a second free magnetic layer through an electrically insulating and electronically reflective layer. An electrically insulating and non-magnetic tunneling barrier layer separates the free magnetic element from a reference magnetic layer.
Abstract:
A magnetic memory unit includes a tunneling barrier separating a free magnetic element and a reference magnetic element. A first phonon glass electron crystal layer is disposed on a side opposing the tunneling barrier of either the free magnetic element or the reference magnetic element. A second phonon glass electron crystal layer also be disposed on a side opposing the tunneling barrier of either the free magnetic element or the reference magnetic element to provide a Peltier effect on the free magnetic element and the reference magnetic element.
Abstract:
Apparatus and associated method for writing data to a non-volatile memory cell, such as spin-torque transfer random access memory (STRAM). In accordance with some embodiments, a resistive sense element (RSE) has a heat assist region, magnetic tunneling junction (MTJ), and pinned region. When a first logical state is written to the MTJ with a spin polarized current, the pinned and heat assist regions each have a substantially zero net magnetic moment. When a second logical state is written to the MTJ with a static magnetic field, the pinned region has a substantially zero net magnetic moment and the heat assist region has a non-zero net magnetic moment.
Abstract:
Variable write and read methods for resistance random access memory (RRAM) are disclosed. The methods include initializing a write sequence and verifying the resistance state of the RRAM cell. If a write pulse is needed, then two or more write pulses are applied through the RRAM cell to write the desired data state to the RRAM cell. Each subsequent write pulse has substantially the same or greater write pulse duration. Subsequent write pulses are applied to the RRAM cell until the RRAM cell is in the desired data state or until a predetermined number of write pulses have been applied to the RRAM cell. A read method is also disclosed where subsequent read pulses are applied through the RRAM cell until the read is successful or until a predetermined number of read pulses have been applied to the RRAM cell.
Abstract:
Variable write and read methods for resistance random access memory (RRAM) are disclosed. The methods include initializing a write sequence and verifying the resistance state of the RRAM cell. If a write pulse is needed, then two or more write pulses are applied through the RRAM cell to write the desired data state to the RRAM cell. Each subsequent write pulse has substantially the same or greater write pulse duration. Subsequent write pulses are applied to the RRAM cell until the RRAM cell is in the desired data state or until a predetermined number of write pulses have been applied to the RRAM cell. A read method is also disclosed where subsequent read pulses are applied through the RRAM cell until the read is successful or until a predetermined number of read pulses have been applied to the RRAM cell.
Abstract:
A magnetic memory cell having a ferromagnetic free layer and a ferromagnetic pinned reference layer, each having an out-of-plane magnetic anisotropy and an out-of-plane magnetization orientation and switchable by spin torque. The cell includes a ferromagnetic assist layer proximate the free layer, the assist layer having a low magnetic anisotropy less than about 500 Oe. The assist layer may have in-plane or out-of-plane anisotropy.
Abstract:
Self-reference reading a magnetic tunnel junction data cell methods are disclosed. An illustrative method includes applying a read voltage across a magnetic tunnel junction data cell and forming a read current. The magnetic tunnel junction data cell has a first resistance state. The read voltage is sufficient to switch the magnetic tunnel junction data cell resistance. The method includes detecting the read current and determining if the read current remains constant during the applying step. If the read current remains constant during the applying step, then the first resistance state of the magnetic tunnel junction data cell is the resistance state that the read voltage was sufficient to switch the magnetic tunnel junction data cell to.
Abstract:
A magnetic tunnel junction having a compensation element is disclosed. The magnetic tunnel junction includes a synthetic antiferromagnetic reference element, and a synthetic antiferromagnetic compensation element having an opposite magnetization moment to a magnetization moment of the synthetic antiferromagnetic reference element. A free magnetic layer is between the synthetic antiferromagnetic reference element and the synthetic antiferromagnetic compensation element, and an electrically insulating and non-magnetic tunneling barrier layer separates the free magnetic layer from the synthetic antiferromagnetic reference element. The free magnetic layer includes Co100-X-YFeXBY wherein X is a value being greater than 30 and Y is a value being greater than 15.