Abstract:
Disclosed here is a nonvolatile semiconductor memory device used to prevent data loss that might occur in unselected memory cells due to a disturbance that might occur during programming/erasing in/from those memory cells. In the nonvolatile semiconductor memory device, the number of programming/erasing operations performed in a data storage block over a programming/erasing unit of the subject nonvolatile memory is recorded in an erasing/programming counter EW CT provided in each data storage block. When the value of the erasing/programming counter reaches a predetermined value, the data storage block corresponding to the erasing/programming counter is refreshed. In the refreshing operation, the data in the data storage block is stored in a temporary storing region provided in the data storage block, then the data in a temporary storing region of the data storage area is erased and the data stored temporarily is programmed in the data storage block again.
Abstract:
An operation scheme for operating stably a semiconductor nonvolatile memory device is provided.When hot-hole injection is conducted in the semiconductor nonvolatile memory device of a split gate structure, the hot-hole injection is verified using a crossing point that does not change with time. Thus, an erased state can be verified without being aware of any time-varying changes.Also, programming or programming/erasure is conducted by repeating pulse voltage or multi-step voltage application to a gate section multiple times.
Abstract:
An opening and closing device for opening and closing a bonnet provided in the rear part of the machine body is arranged in such a manner as to ensure as large an opening portion to be formed when the bonnet is opened as possible. The opening and closing devices 18 and 19 for the bonnet 13 provided in the rear part of the machine body are adapted to have a 4-point supported link structure comprising: a bonnet side support plate 21 fixed integrally to the bonnet 13 and having first and second support members 21c and 21d provided, respectively, in the front and rear end portions thereof; a machine body side support plate 20 fixed integrally to a bracket for opening and closing device 17a that is provided in the rear frame 10 and having first and second support members 20c and 20d provided, respectively, in the front and rear end portions thereof; and first and second links 22 and 23 for movably connecting, respectively, the first support members 20c and 21c and the second support members 20d and 21d on the respective support plates 20 and 21.
Abstract:
An operation scheme for operating stably a semiconductor nonvolatile memory device is provided. When hot-hole injection is conducted in the semiconductor nonvolatile memory device of a split gate structure, the hot-hole injection is verified using a crossing point that does not change with time. Thus, an erased state can be verified without being aware of any time-varying changes. Also, programming or programming/erasure is conducted by repeating pulse voltage or multi-step voltage application to a gate section multiple times.
Abstract:
In a split gate MONOS memory which carries out rewrite by hot carrier injection, retention characteristics are improved. A select gate electrode of a memory cell is connected to a select gate line, and a memory gate electrode is connected to a memory gate line. A drain region is connected to a bit line, and a source region is connected to a source line. Furthermore, a well line is connected to a p type well region in which the memory cell is formed. When write to the memory cell is to be carried out, write by a source side injection method is carried out while applying a negative voltage to the p type well region via the well line.
Abstract:
An erase method where a corner portion on which an electric field concentrates locally is provided on the memory gate electrode, and charges in the memory gate electrode are injected into a charge trap film in a gate dielectric with Fowler-Nordheim tunneling operation is used. Since current consumption at the time of erase can be reduced by the Fowler-Nordheim tunneling, a power supply circuit area of a memory module can be reduced. Since write disturb resistance can be improved, a memory array area can be reduced by adopting a simpler memory array configuration. Owing to both the effects, an area of the memory module can be largely reduced, so that manufacturing cost can be reduced. Further, since charge injection centers of write and erase coincide with each other, so that (program and erase) endurance is improved.
Abstract:
Performance and reliability of a semiconductor device including a non-volatile memory are improved. A memory cell of the non-volatile memory includes, over an upper portion of a semiconductor substrate, a select gate electrode formed via a first dielectric film and a memory gate electrode formed via a second dielectric film formed of an ONO multilayered film having a charge storing function. The first dielectric film functions as a gate dielectric film, and includes a third dielectric film made of silicon oxide or silicon oxynitride and a metal-element-containing layer made of a metal oxide or a metal silicate formed between the select gate electrode and the third dielectric film. A semiconductor region positioned under the memory gate electrode and the second dielectric film has a charge density of impurities lower than that of a semiconductor region positioned under the select gate electrode and the first dielectric film.
Abstract:
In a situation where a memory cell includes an ONO film, which comprises a silicon nitride film for charge storage and oxide films positioned above and below the silicon nitride film; a memory gate above the ONO film; a select gate, which is adjacent to a lateral surface of the memory gate via the ONO film; a gate insulator positioned below the select gate; a source region; and a drain region, an erase operation is performed by injecting holes generated by BTBT into the silicon nitride film while applying a positive potential to the source region, applying a negative potential to the memory gate, applying a positive potential to the select gate, and flowing a current from the drain region to the source region, thus improving the characteristics of a nonvolatile semiconductor memory device.
Abstract:
An interface between a bottom oxide film and a silicon nitride film in a neighborhood of a bottom part of a select gate is located at a position as high as or higher than that of an interface between a silicon substrate (p-type well) and a gate insulating film (d≧0) Further, the gate insulating film and the bottom oxide film are successively and smoothly jointed in the neighborhood of the bottom part of the select gate. By this configuration, localization in a distribution of electrons injected into the silicon nitride film in the writing is mitigated and electrons to be left unerased by hot-hole erasing are reduced. Therefore, not only the increase ratio of the electrons left unerased in the writing can be reduced, but also the problem in which the threshold voltage does not decrease to the predetermined voltage in the deletion can be suppressed.
Abstract:
A method of manufacturing a non-volatile semiconductor memory device is provided which overcomes a problem of penetration of implanted ions due to the difference of an optimal gate height in simultaneous formation of a self-align split gate type memory cell utilizing a side wall structure and a scaled MOS transistor. A select gate electrode to form a side wall in a memory area is formed to be higher than that of the gate electrode in a logic area so that the height of the side wall gate electrode of the self-align split gate memory cell is greater than that of the gate electrode in the logic area. Height reduction for the gate electrode is performed in the logic area before gate electrode formation.