IMMOBILIZATION OF INSOLUBLE PARTICLES IN POLYMER

    公开(公告)号:US20220403119A1

    公开(公告)日:2022-12-22

    申请号:US17869733

    申请日:2022-07-20

    Abstract: A method of immobilization of an insoluble dopant. In some embodiments, the insoluble dopant comprises a coordination polymer. In some embodiments, the insoluble dopant comprises a vapochromic coordination polymer. The method may comprise dissolving a polymer carrier in a solvent. The polymer carrier may comprise a thermoplastic such as, but not limited to, polylactic acid, polyethylene glycol or polycarbonate. The insoluble dopant (e.g. a coordination polymer such as a vapochromic coordination polymer) may then be mixed into the dissolved polymer. Phase separation of the mixture of the dopant and dissolved polymer may be induced to form a hydrogel. The hydrogel may be employed as is (e.g. as a raw material for hydrogel 3D printing, as a sensing material, etc.) or may undergo further processing (e.g. solidification, grinding, extrusion, etc.) before being employed, for example, as a raw material for 3D printing, as a sensing material, etc.

    Magnetic coupling layers, structures comprising magnetic coupling layers and methods for fabricating and/or using same

    公开(公告)号:US11025200B2

    公开(公告)日:2021-06-01

    申请号:US16562337

    申请日:2019-09-05

    Abstract: A magnetic structure is provided. The magnetic structure may have a first magnetic layer with a first magnetization direction, a second magnetic layer with a second magnetization direction and a coupling layer interposed between the first and second magnetic layers. The coupling layer may include at least one non-magnetic element and at least one magnetic element. The atomic ratio of the at least one non-magnetic element to the at least one magnetic element is (100−x):x, where x is an atomic concentration parameter. Atomic concentration parameter, x, may cause the first magnetic layer to be non-collinearly coupled to the second magnetic layer such that, in the absence of external magnetic field, the first magnetization direction is oriented at a non-collinear angle relative to the second magnetization direction.

    Smart fluid damper
    47.
    发明授权

    公开(公告)号:US11015672B2

    公开(公告)日:2021-05-25

    申请号:US16783221

    申请日:2020-02-06

    Abstract: A bicycle with a suspension system for a wheel of the bicycle, the suspension system including a smart fluid damper for dampening a movement of the wheel relative to the frame. The smart fluid damper includes a flow control element disposed within a cavity of the damper and configured to apply a field to a smart fluid within a fluid passage extending through the flow control element. The flow control element includes field barriers proximate the fluid passage to locally block and/or divert the field such that the field cannot pass therethrough. The field barriers are arranged to cause the field to criss-cross the fluid passage at multiple axial intervals along the fluid passage, thereby focusing the field within the fluid passage.

Patent Agency Ranking