Abstract:
An imaging transform spectrometer, and method of operation thereof, that is dynamically configurable “on demand” between an interferometric spectrometer function and a broadband spatial imaging function to allow a single instrument to capture both broadband spatial imagery and spectral data of a scene. In one example, the imaging transform spectrometer is configured such that the modulation used for interferometric imaging may be dynamically turned ON and OFF to select a desired mode of operation for the instrument.
Abstract:
A spectrometer is provided. In one implementation, for example, a spectrometer comprises an excitation source, a focusing lens, a movable mirror, and an actuator assembly. The focusing lens is adapted to focus an incident beam from the excitation source. The actuator assembly is adapted to control the movable mirror to move a focused incident beam across a surface of the sample.
Abstract:
A system and method of high-speed microscopy using a two-photon microscope with spectral resolution. The microscope is operable to provide two- to five-dimensional fluorescence images of samples, including two or three spatial dimensions, a spectral dimension (for fluorescence emission), and a temporal dimension (on a scale of less than approximately one second). Two-dimensional (spatial) images with a complete wavelength spectrum are generated from a single scan of a sample. The microscope may include one of a multi-beam point scanning microscope, a single beam line scanning microscope, and a multi-beam line scanning microscope. The line scans may be formed using one or more of curved mirrors and lenses. The multiple beams may be formed using one of a grating, an array of lenses, and a beam splitter.
Abstract:
A drug inspection device and method for distinguishing tablets that have different amounts of active pharmaceutical ingredients and are indistinguishable in appearance. The device focuses on a tablet packaging process for tablets containing different amounts of active pharmaceutical ingredients, every row or every pocket, having housed therein a plurality of tablets, is used for conveyance. A beam having near-infrared light irradiates the tablets, a spectroscope receives reflected light, a near-infrared imaging unit captures a spectrum obtained through dispersion of the reflected light by the spectroscope and generates image data, and a control unit processes the image data and performs an operation for distinguishing the types of tablets. The control unit controls the near-infrared imaging unit to perform image capture at least once on the tablets included in the one row, to compute average spectrum data per tablet, and to distinguish the type of tablet based on the average spectrum data.
Abstract:
Methods and systems for detecting early stage dental caries and decays are provided. In particular, in an embodiment, laser-induced autofluorescence (AF) from multiple excitation wavelengths is obtained and analyzed. Endogenous fluorophores residing in the enamel naturally fluoresce when illuminated by wavelengths ranging from ultraviolet into the visible spectrum. The relative intensities of the AF emission changes between different excitation wavelengths when the enamel changes from healthy to demineralized. By taking a ratio of AF emission spectra integrals between different excitation wavelengths, a standard is created wherein changes in AF ratios within a tooth are quantified and serve as indicators of early stage enamel demineralization. The techniques described herein may be used in conjunction with a scanning fiber endoscope (SFE) to provide a reliable, safe and low-cost means for identifying dental caries or decays.
Abstract:
Spectral imaging sensors and methods are disclosed. A spectral imaging sensor includes a color-coded array of apertures positioned to receive light from an object to be imaged. The array includes a first plurality of apertures configured to pass light in a first predetermined wavelength range and a second plurality of apertures configured to pass light in a second predetermined wavelength range different from the first predetermined wavelength range. The imaging sensor further includes one or more optical elements positioned to receive light passing through the color-coded array, and a photodetector positioned to receive light from the one of more optical elements. A spectral imaging method includes the steps of filtering light from an object to be imaged through a color-coded array of apertures, redirecting the filtered light with one or more optical elements, and receiving the redirected light with a photodetector.
Abstract:
Stand-off spectrometry systems and methods are described herein. One system includes a laser source configured to emit a single-spectral light, and an optical frequency comb (OFC) coupled to the laser source and configured to generate, using the single-spectral light, a multi-spectral light to determine an absorption spectrum of a substance.
Abstract:
A method for reducing dimensionality of hyperspectral images includes receiving a hyperspectral image having a plurality of pixels. The method may further include establishing an orthonormal basis vector set comprising a plurality of mutually orthogonal normalized members. Each of the mutually orthogonal normalized members may be associated with one of the plurality of pixels of the hyperspectral image. The method may further include decomposing the hyperspectral image into a reduced dimensionality image, utilizing calculations performed while establishing said orthonormal basis vector set. A system configured to perform the method may also be provided.
Abstract:
A fluorescence spectrophotometer according to the present invention includes: a light source 1; a sample cell 3; an excitation-side light-dispersing system 2 for dispersing a light from the light source 1 and for casting a desired wavelength of light into the sample cell 3; an emission-side light-dispersing system 4 for dispersing a light emitted from the sample cell 3, the emission-side light-dispersing system 4 being located off an optical path of a transmitted light exiting from the sample cell 3 after being cast from the excitation-side light-dispersing system 2 into the sample cell 3; and a photodetector 5 capable of detecting, among the light from the emission-side light-dispersing system 4, an emission light having the same wavelength as the light cast from the excitation-side light-dispersing system 2 into the sample cell 3.
Abstract:
An all-graphite interferometer bearing assembly is introduced that allows the movement of a movable mirror in a Michelson interferometer without degradation during use. The assembly includes a stationary hollow graphite tube and a movable assembly which includes a mirror and a monolithic graphite member slidably disposed within the bore of the graphite tube that is composed of the same grade of graphite material as the monolithic graphite member. The result is a robust novel moving mirror arrangement in a Michelson interferometer that enables precise mirror alignment control, a long stroke length, excellent vibration damping and reduced sensitivity to external vibrations.