摘要:
A method and forming tool for hot forming and press hardening plate-shaped or preformed workpieces of sheet steel, wherein the workpiece is heated to a temperature above the austenitisation temperature and is then formed and quenched in a cooled forming tool having a punch and a female mold, wherein the female mold is coated in its drawing edge region with material in a material-uniting manner and/or is provided there with at least one insert part having a thermal conductivity at least 10 W/(m*K) lower than the thermal conductivity of the portion of the female mold adjacent to the drawing edge region and comes into contact with the workpiece when said workpiece is being hot formed and press hardened, the surface of the material having a transverse dimension within the range of 1.6 times to 10 times the positive radius of the female mold.
摘要:
In a hot stamped steel, when [C] represents an amount of C (mass %), [Si] represents an amount of Si (mass %), and [Mn] represents an amount of Mn (mass %), an expression of 5×[Si]+[Mn])/[C]>10 is satisfied, a metallographic structure includes 80% or more of a martensite in an area fraction, and optionally, further includes one or more of 10% or less of a pearlite in an area fraction, 5% or less of a retained austenite in a volume ratio, 20% or less of a ferrite in an area fraction, and less than 20% of a bainite in an area fraction, TS×λ, which is a product of TS that is a tensile strength and λ that is a hole expansion ratio is 50000 MPa·% or more, and a hardness of the martensite measured with a nanoindenter satisfies H2/H1
摘要:
A method for heating a blank or a preformed steel sheet component for hot forming and/or quench hardening purposes. In at least some regions, the heating is carried out to a temperature above AC3; the heating of the Hank is embodied as a rapid heating and to this end, the blank is heated in a first zone at an average heating rate of >25 K/s up to about 600° C. and above this temperature, is heated at an average heating rate of >10 K/s up to a maximum of the AC3 temperature and then is transferred to a second zone in which the blank that has been preheated in the first zone is heated in at least some regions to temperatures greater than AC3, in particular >850° C., with the heating rate in the second zone being >10 K/s. The invention also relates to a device for carrying out the method.
摘要:
A system and method of making a part. The part may cast in a die. A gripper assembly may be provided that has a gripper and a spray nozzle that provides a fluid. The part may be quenched with a fluid when the part is in the die.
摘要:
A high-strength hot-formed steel sheet member exhibiting both a consistent hardness and delayed-fracture resistance, and is characterized in that: the high-strength hot-formed steel sheet member has a prescribed chemical composition; the degree of Mn segregation α (=[maximum Mn concentration (mass %) at the sheet center in the thickness direction]/[average Mn concentration (mass %) at a depth of ¼ of the total thickness of the sheet from the surface]) is less than or equal to 1.6; the steel purity value as defined in JIS G 0555 (2003) is less than or equal to 0.08%; the average grain size for prior γ grains is less than or equal to 10 μm; and the number density of the residual carbides is less than or equal to 4×103 particles/mm2.
摘要:
A method for forming a component utilizing ultra-high strength steel and components formed by the method. The method includes the step of providing a flat blank of ultra-high strength 22MnB5 steel. The next step of the method is, cold forming the flat blank into an unfinished shape of a component while the blank is in an unhardened state. The method continues by providing an inert atmosphere. Then, heating the unfinished shape of the component in the inert atmosphere. The method proceeds by forming a finished shape of the component using a quenching die resulting in a fine-grained martensitic component material structure and enabling net shape processing to establish fmal geometric dimensions of the components.
摘要:
Methods suitable for forming complex parts from work-hardened sheet materials of limited formability are described. The formability of the work-hardened sheet is enhanced by forming at elevated temperature. The forming temperature is preferably selected to minimally undo the effects of work hardening so that the formed part is of higher strength than a like part formed from an annealed sheet. The method is applicable to age-hardening and non-age-hardening aluminum and magnesium alloys.
摘要:
An aluminum or aluminum alloy-coated steel material includes base steel; and a coating layer formed on a surface of the base steel and containing by mass % Mg: 6% to 10%, Si: 3% to 7%, Fe: 0.2% to 2%, Mn: 0.02% to 2%, and the balance as Al and incidental impurities, wherein the coating layer has pseudoternary eutectic microstructures of αAl—Mg2Si—(Al—Fe—Si—Mn) and an area ratio of the pseudoternary eutectic microstructures in the coating layer is at least 30%.
摘要:
A hot-formed member according to the present invention has a predetermined chemical composition, a metallographic microstructure in which, in terms of area %, ferrite is 10% to 90%, unrecrystallized ferrite is 0% to 2.0%, martensite is 10% to 90%, the total area ratio of the ferrite and the martensite is 90% to 100%, and the average grain size of the ferrite is 0.5 μm to 5.0 μm, and the tensile strength of 900 MPa to 1800 MPa.
摘要:
A method for producing a motor vehicle axle component includes the method steps of providing a metal strip made of a hardenable steel material, hot rolling the metal strip and subsequent cold rolling with more than 4% rolling reduction degree, annealing at 600 to 800° C., in particular at 650 to 750° C. for a time period between 10 and 20 hours, in particular 13 to 17 hours, cutting the heat treated metal strip to cut sheet metals, forming the metal cut into a motor vehicle axle component, austenizing and quenching the motor vehicle axle component, wherein the motor vehicle axle component has at least in a surface region a grain size characteristic value according to ASTM-E 112 of greater than 9.