Abstract:
A linear system and an EER system are used in combination such that the EER system can also be used in a cellular phone with a wide output dynamic range. In the EER system, linear control of an amplifier becomes difficult in a low output range. Thus, use of the EER system is limited to a high output range, and the linear system is used in the low output range as in the past. A power efficiency is improved while requirements of linearity are satisfied by this structure. An effective circuit structure is proposed for a switching control system for two systems. In addition, an up-converter is constituted in combination with a step-down element with high responsiveness, whereby a power supply voltage control circuit for the EER system with a wide control range and high responsiveness is provided.
Abstract:
The present invention provides a method of manufacturing semiconductor devices, by which InGaAs-base C-top HBTs are manufactured at low cost. Helium ions with a smaller radius are implanted into a p-type InGaAs layer (in external base regions) not covered with a lamination consisting of an undoped InGaAs spacer layer, n-type InP collector layer, n-type InGaAs cap layer, and collector electrode from a direction vertical to the surface of the external base layer or within an angle of 3 degrees off the vertical. In consequence, the p-type InGaAs in the external base regions remains p-type conductive and low resistive and the n-type InAlAs layer in the external emitter regions can be made highly resistive. By this method, InGaAs-base C-top HBTs can be fabricated on a smaller chip at low cost without increase of the number of processes.
Abstract:
A radio communication apparatus including at the transmitter-side output stage a high-frequency power amplifier module that has incorporated therein a single-stage amplifier using one multi-finger type heterojunction bipolar transistor (HBT) or a multi-stage amplifier using a plurality of HBTs sequentially connected in cascade, and at the output end an antenna connected to the high-frequency power amplifier module, wherein first capacitors and first resistors are inserted in series between the input terminal of the high-frequency power amplifier module and the control fingers of the HBT, and second resistors are inserted between the control terminal of the high-frequency power amplifier module and the control fingers of the HBT and connected to the nodes of the first resistors and the first capacitors.
Abstract:
A hetero-junction bipolar transistor having an emitter composed of a semiconductor having a wider forbidden band width than that of a semiconductor constituting a base is disclosed. In the transistor, the emitter and the electrode leader area composed of a single crystalline semiconductor are provided being extended from the upper part of the emitter to the surface of the base through an insulating layer, for the purpose of making it possible to miniaturize the transistor and to operate the transistor at a high-speed by decreasing the emitter resistance.
Abstract:
This invention discloses a heterojunction type field effect transistor such as 2DEG-FET and a heterojunction type bipolar transistor such as 2DEG-HBT. The former is fabricated by applying to the formation of its source and drain regions a technique which causes the disorder of the heterojunction by introduction of an impurity such as by ion implantation or a technique which causes the disorder of the heterojunction by forming a film made of at least one kind of material selected from insulators, metals and semiconductors which have a different linear coefficient of thermal expansion from that of the material of a semiconductor substrate on the heterojunction semiconductor region which is to be disordered. The latter is fabricated by applying either of the techniques described above to a base ohmic contact region. These semiconductor devices can reduce the source-gate resistance and the parasitic base resistance. The invention discloses also the structure of the ohmic contact layer which has a trench on the surface thereof and is particularly effective for reducing the source-gate parasitic resistance.
Abstract:
The invention is directed to improve resistance to destruction of a semiconductor device. A protection circuit having a plurality of bipolar transistors which are Darlington connected between outputs (collector and emitter) of an amplification circuit of a high output is electrically connected in parallel with the amplification circuit. The amplification circuit has a plurality of unit HBTs (Heterojunction Bipolar Transistors) which are connected in parallel with each other. The protection circuit has a two-stage configuration including a first group of a protection circuit having a plurality of bipolar transistors Q1 to Q5 and a second group of a protection circuit having a plurality of bipolar transistors.
Abstract:
The technical subject of the invention is to inhibit disconnection of electrodes caused by a step and bursting caused by residual air. That is, an object of the present invention is to provide a semiconductor device capable of overcoming a drawback due to the shape of a concave portion present in the zinc blende type compound semiconductor substrate in which the area of the bottom is larger than the surface in the cross sectional shape, as well as a manufacturing method thereof. According to the invention, a hole or step present in the semiconductor substrate constituting the semiconductor device is formed into a normal mesa shape irrespective of the orientation of the crystals on the surface of the semiconductor substrate. Accordingly, the present invention uses a novel wet etching solution having an etching rate for a portion below the etching mask higher than that in the direction of the depth of the semiconductor substrate.
Abstract:
In a semiconductor element using avalanche multiplication such as a light-receiving element or a microwave oscillating element, a semiconductor A and a semiconductor B which satisfy the following condition:X.sub.A
Abstract:
Disclosed are a semiconductor integrated circuit device and a wireless communication system that are capable of improving reception sensitivity. The wireless communication system includes, for instance, a first duplexer, a second duplexer, a first low-noise amplifier circuit, and a second low-noise amplifier circuit. A transmission band compliant with a communication standard is split into two segments for use, namely, low- and high-frequency transmission bands. A reception band compliant with the communication standard is split into two segments for use, namely, low- and high-frequency reception bands. The first duplexer uses the low-frequency transmission band and low-frequency reception band as passbands. The second duplexer uses the high-frequency transmission band and high-frequency reception band as passbands. A signal received from the first duplexer and a signal received from the second duplexer are respectively amplified by the first and the second low-noise amplifier circuits, which are respectively provided to handle such signals.
Abstract:
An RF power amplifier has a final-stage amplifier stage which generates an RF transmit output signal, a signal detector which detects an RF transmit output level, a first detector, a second detector and a control circuit. The final-stage amplifier stage includes a transistor and a load element and performs saturation type nonlinear amplification and non-saturation type linear amplification. The first detector and the control circuit maintain the RF transmit output signal approximately constant with respect to a variation in load at an antenna at the saturation type nonlinear amplification. The second detector and the control circuit reduce an increase in the output voltage of the final stage transistor with respect to an overload state of the antenna at the non-saturation type linear amplification.