摘要:
A light-emitting device according to the present invention includes a first electrode unit 9 for injecting an electron, a second electrode unit 10 for injecting a hole, and light-emitting units 11 and 12 electrically connected to the first electrode unit 9 and the second electrode unit 10 respectively, wherein the light-emitting units 11 and 12 are formed of single-crystal silicon, the light-emitting units 11 and 12 having a first surface (topside surface) and a second surface (underside surface) opposed to the first surface, plane orientation of the first and second surfaces being set to a (100) plane, thicknesses of the light-emitting units 11 and 12 in a direction orthogonal to the first and second surfaces being made extremely thin.
摘要:
A method of manufacture of a semiconductor device calls for forming, all over the surface of a substrate below the channel region of a MISFET, a p type impurity layer having a first peak in impurity concentration distribution and another p type impurity layer having a second peak in impurity concentration distribution, each layer having a function of preventing punch-through. Compared with a device having a punch through stopper layer with a pocket structure, the device produced by the present method operates in such a way that fluctuations in the threshold voltage are suppressed. Moreover, with a relative increase in the controllable width of a depletion layer, the sub-threshold swing becomes small, thereby making it possible to prevent lowering of the threshold voltage and to improve the switching rate of the MISFET.
摘要:
Disclosed is an multi-layered SOI substrate, which includes a supporting substrate, and a first insulator, a semiconductor film, a second insulator and a single crystalline semiconductor film (SOI film) which are layered on the main surface of the supporting substrate. The SOI substrate is formed by a direct bonding technique, and a bipolar transistor and an MOS transistor are formed using the single crystalline semiconductor film (SOI layer). The extremely shallow junction can be formed without epitaxial growth, thereby significantly increasing the operation speed of the semiconductor device at a low cost.
摘要:
A transistor is formed on a bonded SOI substrate. A collector electrode is connected to the peripheral sides of the collector areas on the insulator. A first insulator of isolation is formed on the peripheral side of the collector electrode. A base electrode is connected to a base area on the first insulator of isolation. Second insulators of isolation are formed on the peripheral side of a base electrode, and emitter electrode is connected to an emitter area by the second insulators of isolation. The connections between the collector electrode and the collector areas, between the base electrode and the base area, and between the emitter electrode and the emitter area are made under the emitter electrode, so the occupation area is small.
摘要:
The present invention relates to an LSI in which functions can be changed, and realizes, particularly, a system LSI in which functions are changed by changing connections of the circuit by use of MEMS switches. A bistable MEMS switch which can maintain states, and exhibits optimal stitching property, i.e., the switch has a very small resistance of several Ω or less in an on-state, and has an infinite resistance in an off-state; is employed. An element in which functions can be changed during operation, is produced by utilizing a wiring layer of a CMOS semiconductor to form the MEMS switch. A semiconductor device exhibiting high-degree of freedom for changing functions, high-speed, and having small area, is realized.
摘要:
The Mott transistor capable of operating at a room temperature can be realized by using a self-organized nanoparticle array for the channel portion. The nanoparticle used in the present invention comprises metal and organic molecules, and the size thereof is extremely small, that is, about a few nm. Therefore, the charging energy is sufficiently larger than the thermal energy kBT=26 meV, and the transistor can operate at a room temperature. Also, since the nanoparticles with a diameter of a few nm are arranged in a self-organized manner and the Mott transition can be caused by the change of a number of electrons of the surface density of about 1012 cm−2, the transistor can operate by the gate voltage of about several V.
摘要翻译:能够在室温下操作的莫特晶体管可以通过使用用于沟道部分的自组织纳米颗粒阵列来实现。 本发明中使用的纳米颗粒包含金属和有机分子,其尺寸非常小,即约几nm。 因此,充电能量足够大于热能k B = 26meV,并且晶体管可以在室温下工作。 此外,由于直径为几nm的纳米颗粒以自组织的方式排列,并且Mott转变可以由表面密度约为10〜12的电子数量的变化引起, cm 2,晶体管可以通过约几V的栅极电压工作。
摘要:
The present invention provides a MISFET with a replacement gate electrode, which ensures large ON-current. A semiconductor device, in which on the substrate, first and second field effect transistors are formed, the first field effect transistor is a replacement gate type field effect transistor, and the length of the overlap between a gate electrode and a source/drain diffusion zone of the first field effect transistor correspond to that between a gate electrode and a source/drain diffusion zone of the second field effect transistor.
摘要:
Disclosed is an multi-layered SOI substrate, which includes a supporting substrate, and a first insulator, a semiconductor film, a second insulator and a single crystalline semiconductor film (SOI film) which are layered on the main surface of the supporting substrate The SOI substrate is formed by a direct bonding technique, and a bipolar transistor and an MOS transistor are formed using the single crystalline semiconductor film (SOI layer). The extremely shallow junction can be formed without epitaxial growth, thereby significantly increasing the operation speed of the semiconductor device at a low cost.
摘要:
A first region of a first conductivity type is formed in the surface of a semiconductor body, and second and third regions of a second conductivity type are formed on and under, respectively, of the first region. An electrode region formed on a first insulating film formed on the semiconductor body is connected electrically to the first region. The electrode region is defined as having an elongated first part an upper surface of which is connected to an electrode, and having a second, different part which has a substantially constant width and which width is substantially equal to the thickness of the first portion of the electrode region. A metal silicide film is formed over the upper surface of the first portion of the electrode region. The first, second and third regions can be base, emitter and collector regions, respectively, of a bipolar transistor formed in an island region of an epitaxially grown layer on a semiconductor substrate.
摘要:
The present invention relates to an LSI in which functions can be changed, and realizes, particularly, a system LSI in which functions are changed by changing connections of the circuit by use of MEMS switches. A bistable MEMS switch which can maintain states, and exhibits optimal stitching property, i.e., the switch has a very small resistance of several Ω or less in an on-state, and has an infinite resistance in an off-state; is employed. An element in which functions can be changed during operation, is produced by utilizing a wiring layer of a CMOS semiconductor to form the MEMS switch. A semiconductor device exhibiting high-degree of freedom for changing functions, high-speed, and having small area, is realized.