Abstract:
A MOSFET includes a silicon carbide (SiC) substrate having a main surface having an off angle of not less than 50° and not more than 65° relative to a {0001} plane; a semiconductor layer formed on the main surface of the SiC substrate; and an insulating film formed in contact with a surface of the semiconductor layer. When the insulating film has a thickness of not less than 30 nm and not more than 46 nm, the threshold voltage thereof is not more than 2.3V. When the insulating film has a thickness of more than 46 nm and not more than 100 nm, the threshold voltage thereof is more than 2.3 V and not more than 4.9 V.
Abstract:
A surface reconstruction method for a silicon carbide substrate includes a silicon film forming step of forming a silicon film on a surface of the silicon carbide substrate and a heat treatment step of heat-treating the silicon carbide substrate and the silicon film without providing a polycrystalline silicon carbide substrate on a surface of the silicon film. Here, after the heat treatment step, a silicon film removal step of removing the silicon film may be included. Further, a silicon oxide film forming step of oxidizing the silicon film after the heat treatment step to generate a silicon oxide film, and a silicon oxide film removal step of removing the silicon oxide film may be included.
Abstract:
A method of manufacturing an SiC semiconductor device includes the steps of ion implanting a dopant at least in a part of a surface of an SiC single crystal, forming an Si film on the surface of the ion-implanted SiC single crystal, and heating the SiC single crystal on which the Si film is formed to a temperature not less than a melting temperature of the Si film.
Abstract:
A surface reconstruction method for a silicon carbide substrate (1) includes a silicon film forming step of forming a silicon film (2) on a surface of the silicon carbide substrate (1) and a heat treatment step of heat-treating the silicon carbide substrate (1) and the silicon film (2) without providing a polycrystalline silicon carbide substrate on a surface of the silicon film (2). Here, after the heat treatment step, a silicon film removal step of removing the silicon film (2) may be included. Further, a silicon oxide film forming step of oxidizing the silicon film (2) after the heat treatment step to generate a silicon oxide film, and a silicon oxide film removal step of removing the silicon oxide film may-be included.
Abstract:
A semiconductor optical integrated device 1 comprises a light-emitting element portion 110, modulation element portion 120, and separation portion 130 on a substrate 2. Light-emitting element portion 110 comprises a semiconductor laser element portion, and modulation element portion 120 comprises a modulation element portion. Separation portion 130 is formed between light-emitting element portion 110 and modulation element portion 120. In separation portion 130, a semiconductor embedded portion 80e is provided in a second clad layer 8m. Whereas second clad layer 8m consists of p-type InP, semiconductor embedded portion 80e consists of n-type InP. Hence semiconductor embedded portion 80e has the effect of impeding the leakage current flowing between electrodes 90a and 90b. As a result, the leakage current occurring between electrodes 90a and 90b via second clad layer 8m is reduced.
Abstract:
A first layer has n type conductivity. A second layer is epitaxially formed on the first layer and having p type conductivity. A third layer is on the second layer and having n type conductivity. ND is defined to represent a concentration of a donor type impurity. NA is defined to represent a concentration of an acceptor type impurity. D1 is defined to represent a location in the first layer away from an interface between the first layer and the second layer in a depth direction. D1 in which 1≦ND/NA≦50 is satisfied is within 1 μm therefrom. A gate trench is provided to extend through the third layer and the second layer to reach the first layer. A gate insulating film covers a side wall of the gate trench. A gate electrode is embedded in the gate trench with the gate insulating film interposed therebetween.
Abstract:
On a p− epitaxial layer, an n-type epitaxial layer and a gate region are formed in this order. A gate electrode is electrically connected to the gate region, and a source electrode and a drain electrode are spaced apart from each other with the gate electrode sandwiched therebetween. A control electrode is used for applying to the p− epitaxial layer a voltage that causes a reverse biased state of the p− epitaxial layer and the n-type epitaxial layer in an OFF operation.
Abstract:
An impurity of a first conductivity type is implanted onto a silicon carbide substrate through an opening in a mask layer. First and second films made of first and second materials respectively are formed. It is sensed that etching of the first material is performed during anisotropic etching, and then anisotropic etching is stopped. An impurity of a second conductivity type is implanted onto the silicon carbide substrate through the opening narrowed by the first and second films. Thus, the impurity regions can be formed in an accurately self-aligned manner.
Abstract:
A silicon carbide substrate having a surface is prepared. An impurity region is formed by implanting ions from the surface into the silicon carbide substrate. Annealing for activating the impurity region is performed. The annealing includes the step of applying first laser light having a first wavelength to the surface of the silicon carbide substrate, and the step of applying second laser light having a second wavelength to the surface of the silicon carbide substrate. The silicon carbide substrate has first and second extinction coefficients at the first and second wavelengths, respectively. A ratio of the first extinction coefficient to the first wavelength is higher than 5×105/m. A ratio of the second extinction coefficient to the second wavelength is lower than 5×105/m. Consequently, damage to the surface of the silicon carbide substrate during laser annealing can be reduced.
Abstract:
A substrate achieving suppressed deterioration of processing accuracy of a semiconductor device due to bending of the substrate, a substrate with a thin film and a semiconductor device formed with the substrate above, and a method of manufacturing the semiconductor device above are obtained. A substrate according to the present invention has a main surface having a diameter of 2 inches or greater, a value for bow at the main surface being not smaller than −40 μm and not greater than −5 μm, and a value for warp at the main surface being not smaller than 5 μm and not greater than 40 μm. Preferably, a value for surface roughness Ra of the main surface of the substrate is not greater than 1 nm and a value for surface roughness Ra of a main surface is not greater than 100 nm.