Abstract:
An organic photoelectric device includes a first electrode and a second electrode facing each other and a photoelectric conversion layer between the first electrode and the second electrode, wherein the photoelectric conversion layer includes a p-type semiconductor compound and an n-type semiconductor compound, and the organic photoelectric device satisfies Equation 1, and has external quantum efficiency (EQE) of greater than or equal to about 40% at −3 V.
Abstract:
Organic photoelectric devices, image sensors, and electronic device, include a first electrode and a second electrode facing each other, and an active layer between the first electrode and the second electrode, wherein the active layer includes a p-type semiconductor compound including a squaraine derivative and an n-type semiconductor compound represented by Chemical Formula 1.
Abstract:
A photoelectric conversion device of an image sensor includes a first transparent electrode layer, an active layer, and a second transparent electrode layer, which are sequentially stacked. A light having a wavelength of about 440 nm-480 nm is absorbed within a depth of about ⅕ of an entire thickness of the active layer from both the top and bottom surfaces of the active layer.
Abstract:
An organic photoelectric device may include an anode and a cathode facing each other and the active layer between the anode and cathode, wherein the active layer includes a compound represented by Chemical Formula 1 and a compound represented by Chemical Formula 2. Chemical Formula 1 and Chemical Formula 2 are the same as in the detailed description.
Abstract:
An organic image sensor may be configured to obtain a color signal associated with a particular wavelength spectrum of light absorbed by the organic image sensor may omit a color filter. The organic image sensor may include an organic photoelectric conversion layer including a first material and a second material. The first material may absorb a first wavelength spectrum of light, and the second material may absorb a second wavelength spectrum of light. The organic photoelectric conversion layer may include stacked upper and lower layers, and the respective material compositions of the lower and upper layers may be first and second mixtures of the first and second materials. A ratio of the first material to the second material in the first mixture may be greater than 1/1, and a ratio of the first material to the second material in the second mixture may be less than 1/1.
Abstract:
A composition may include a compound, a film may include the composition, an organic layer of an organic sensor and/or photoelectric diode may include the compound, and the film, organic sensor, and/or photoelectric diode may be included in an electronic device.
Abstract:
A sensor includes a visible light sensor configured to sense light in a visible wavelength spectrum, a near infra-red light sensor on the visible light sensor and configured to sense light in a near infra-red wavelength spectrum, and an optical filter on the near infra-red light sensor and configured to selectively transmit the light in the visible wavelength spectrum and the light in the near infra-red wavelength spectrum, and an electronic device.
Abstract:
An image sensor includes a substrate including a first surface on which light is incident and a second surface opposite to the first surface, unit pixels in the substrate, each including a photoelectric conversion layer, color filters on the first surface of the substrate, a grid pattern on the first surface of the substrate defining a respective light receiving area of each of the unit pixels, and microlenses on the color filters, each of the microlenses corresponding to a respective one of the unit pixels, wherein the unit pixels include a first pixel and a second pixel sharing a first color filter which is one of the color filters, and a first light receiving area of the first pixel is different from a second light receiving area of the second pixel.
Abstract:
An OLED panel for implementing biometric recognition influencing an aperture ratio of an OLED light emitter i includes a substrate, an OLED on the substrate, and a driver on the substrate. The OLED may emit visible light, and the driver may drive the OLED. The driver may include a visible light sensor configured to detect the visible light emitted by the OLED, and the visible light sensor may overlap the OLED in a direction that is substantially perpendicular to an upper surface of the substrate. The OLED panel may include a near infrared ray OLED that is configured to emit near infrared rays, and the driver may include a near infrared ray sensor configured to detect near infrared rays emitted by the near infrared ray OLED. The near infrared ray sensor may overlap the OLED in a direction that is substantially perpendicular to an upper surface of the substrate.
Abstract:
An IR organic photoelectric device having a simplified device structure may include an anode and a cathode facing each other and an infrared absorption and hole transport composite monolayer between the anode and the cathode. An organic image sensor including the IR organic photoelectric device may include an absorption layer between the infrared absorption and hole transport composite monolayer and the cathode.