Abstract:
A method of forming a nonvolatile memory device includes forming first, second, and third gate structures, with the second and third gate structures including first and second spacer structures formed on a sidewall of the second gate structure and sidewalls of the third gate structure. Impurity regions are formed through ion implantation and the first spacer structure shields the second and third gate structures during ion implantation. The second spacer structure defines resulting impurity regions.
Abstract:
A non-volatile memory device comprises a substrate, a control gate electrode on the substrate, and a charge storage region between the control gate electrode and the substrate. A control gate mask pattern is on the control gate electrode, the control gate electrode comprising a control base gate and a control metal gate on the control base gate. A width of the control metal gate is less than a width of the control gate mask pattern. An oxidation-resistant spacer is at sidewalls of the control metal gate positioned between the control gate mask pattern and the control base gate.
Abstract:
A method of fabricating a semiconductor device includes etching a substrate to form a field trench defining an active region and a lower gate pattern on the active region, the lower gate pattern including a tunneling insulating pattern and a lower gate electrode pattern, filling a field insulating material in the field trench to form a field region, forming an upper gate pattern on the lower gate pattern, sequentially forming a stopping layer and a buffer layer on the field region and the upper gate pattern, forming a first resistive pattern on the buffer layer of the field region, and forming a second resistive pattern on the buffer layer on the upper gate pattern, forming an interlayer insulating layer covering the first and second resistive patterns, and performing a planarization process to remove a top surface of the interlayer insulating layer and to remove the second resistive pattern.