Abstract:
A buffering apparatus for buffering context arrays of a multi-tile encoded picture having a plurality of tiles includes a first buffer and a second buffer. The first buffer is arranged to buffer a first context array referenced for performing entropy decoding upon a first tile of the multi-tile encoded picture. The second buffer is arranged to buffer a second context array referenced for performing entropy decoding upon a second tile of the multi-tile encoded picture. When the first tile is currently decoded according to the first context array buffered in the first buffer, the second context array is buffered in the second buffer.
Abstract:
A residual up-sampling apparatus has a residual up-sampling buffer and a shared residual up-sampling circuit. The residual up-sampling buffer stores an intermediate residual up-sampling result. The shared residual up-sampling circuit employs a same processing kernel to perform a first-direction residual up-sampling operation and a second-direction residual up-sampling operation. The first-direction residual up-sampling operation processes an inverse transform output of an inverse transform circuit to generate the intermediate residual up-sampling result to the residual up-sampling buffer. The second-direction residual up-sampling operation performs transpose access upon the residual up-sampling buffer to retrieve the intermediate residual up-sampling result, and processes the intermediate residual up-sampling result to generate a final residual up-sampling result.
Abstract:
A method and apparatus for decoding two-level scanned transform coefficients corresponding to a transform unit (TU) are disclosed. The TU is divided into sub-blocks and the transform coefficients of the TU are scanned across the sub-blocks according to a first scan pattern, and each sub-block is scanned according to a second scan pattern. In one embodiment, the sub-blocks of the transform coefficients received from the variable length decoding are stored in an inverse scan buffer (or TC buffer) and the transform coefficients are retrieved from the inverse scan buffer row-by-row or column-by-column in a selected direction after a corresponding row or column of the transform coefficients is fully received. In a system incorporating an embodiment of the present invention, at least a leading row or a leading column of the transform coefficients is available in the selected direction before a last sub-block of the transform coefficients arrives.
Abstract:
A video processing system includes a data buffer and a storage controller. The data buffer is shared between a plurality of in-loop filters, wherein not all of the in-loop filters comply with a same video standard. The storage controller controls data access of the data buffer, wherein for each in-loop filter granted to access the data buffer, the data buffer stores a partial data of a picture processed by the in-loop filter. Another video processing system includes a storage device and a storage controller. The storage controller adaptively determines a size of a storage space according to a tile partition setting of a picture to be processed by an in-loop filter, and controls the storage device to allocate the storage space to serve as a data buffer for storing data of the in-loop filter.
Abstract:
A video processing apparatus includes a control unit, a storage device, a video decoder and a video processor. The control unit is arranged for generating a color depth control signal. The video decoder is coupled to the storage device, and arranged for decoding an encoded video bitstream and accordingly generating decoded video pictures (sequence) to the storage device. The video processor is coupled to the control unit and the storage device, and arranged for referring to the color depth control signal to enable a target video processing mode selected from a plurality of supported video processing modes respectively corresponding to different output color depths, and processing picture data derived from the data buffered in the storage device under the target video processing mode to generate output video pictures (sequence) to a display apparatus.
Abstract:
A method and apparatus for SAO (sample adaptive offset) processing in a video decoder are disclosed. Embodiments according to the present invention reduce the required line buffer associated with the SAO processing. According to one embodiment, tri-level comparison results for one deblocked pixel row or column of the image unit are determined according to SAO type of the deblocked pixel row or column. The tri-level comparison results are stored in a buffer and the tri-level comparison results are read back from the buffer for SAO processing of the subsequent row or column from a subsequent image unit. The comparison results correspond to “larger”, “equal” and “smaller” states. The comparison results can be stored more efficiently.
Abstract:
A video processing apparatus includes a first processing circuit, a second processing circuit, and a control circuit. The first processing circuit performs a first processing operation. The second processing circuit performs a second processing operation different from the first processing operation. The control circuit generates at least one output coding unit to the second processing circuit according to an input coding unit generated from the first processing circuit, wherein the control circuit checks a size of the input coding unit to selectively split the input coding unit into a plurality of output coding units.
Abstract:
A video processing system includes a data buffer and a storage controller. The data buffer is shared between a plurality of in-loop filters, wherein not all of the in-loop filters comply with a same video standard. The storage controller controls data access of the data buffer, wherein for each in-loop filter granted to access the data buffer, the data buffer stores a partial data of a picture processed by the in-loop filter. Another video processing system includes a storage device and a storage controller. The storage controller adaptively determines a size of a storage space according to a tile partition setting of a picture to be processed by an in-loop filter, and controls the storage device to allocate the storage space to serve as a data buffer for storing data of the in-loop filter.
Abstract:
A video decoding apparatus includes a bitstream parser, a calculator and a memory. The bitstream parser is provided to receive a video bitstream and extracting a set of constraints associated with the video bitstream, wherein the set of constraints has information associated with a direct_8×8_inference flag for a macroblock of a picture, wherein the macroblock has N sub-macroblock partitions. The calculator is provided to calculate first motion vector information associated with the macroblock and obtain second motion vector information associated with K of the N sub-macroblock partitions from the first motion vector information according to the information associated with the direct_8×8_inference flag, wherein K is less than N. The memory is provided to store the second motion vector information.
Abstract:
A method and a circuit for adaptive loop filtering in a video coding system are described. The method can include receiving a block of samples generated from a previous-stage filter circuit in a filter pipeline, the block of samples being one of multiple blocks included in a current picture, performing, in parallel, adaptive loop filter (ALF) processing for multiple target samples in the block of samples, while the previous-stage filter circuit is simultaneously processing another block in the current picture, storing, in a buffer, first samples each having a filter input area defined by a filter shape that includes at least one sample which has not been received, and storing, in the buffer, second samples included in the filter input areas of the first samples.