Abstract:
A normally-off type field effect transistor includes: a first semiconductor layer which is made of a first hexagonal crystal with 6 mm symmetry and has a main surface including a C-axis of the first hexagonal crystal; a second semiconductor layer which is formed on the main surface of the first semiconductor layer and is made of a second hexagonal crystal with 6 mm symmetry having a band gap different from a band gap of the first hexagonal crystal; and a gate electrode, a source electrode and a drain electrode that are formed on the second semiconductor layer. Here, the film thickness of the first nitride semiconductor layer is 1.5 μm or less and the second semiconductor layer is doped with impurities at a dose of 1×1013 cm−2 or more.
Abstract:
A plasma display panel driving device includes an electrode driving unit for generating a drive pulse to be applied to an electrode of a plasma display panel. The electrode driving unit has a plurality of switches. At least one of the plurality of switches is a switch device including a dual-gate semiconductor device. The dual-gate semiconductor device 10 has a semiconductor multilayer 13 formed on a substrate 11 and made of a nitride semiconductor or a silicon carbide semiconductor, a source electrode 16 and a drain electrode 17 formed and spaced apart from each other on the semiconductor multilayer 13, and a first gate electrode 18A and a second gate electrode 18B formed between the source electrode 16 and the drain electrode 17, successively from the source electrode 16 side.
Abstract:
A semiconductor device includes a semiconductor layer stack 13 formed on a substrate 11 and having a channel region, a first electrode 16A and a second electrode 16B formed spaced apart from each other on the semiconductor layer stack 13, a first gate electrode 18A formed between the first electrode 16A and the second electrode 16B, and a second gate electrode 18B formed between the first gate electrode 18A and the second electrode 16B. A first control layer 19A having a p-type conductivity is formed between the semiconductor layer stack 13 and the first gate electrode 18A.
Abstract:
A bidirectional switch includes a field-effect transistor having a first ohmic electrode, a second ohmic electrode and a gate electrode, and a control circuit for controlling between a conduction state and a cut-off state by applying a bias voltage to the gate electrode. The control circuit applies the bias voltage from the first ohmic electrode as a reference when a potential of the second ohmic electrode is higher than the potential of the first ohmic electrode, and applies the bias voltage from the second ohmic electrode as a reference when the potential of the second electrode is lower than the potential of the first ohmic electrode.
Abstract:
A channel layer made of undoped InGaAs, a carrier supply layer made of n-type AlGaAs, a Schottky layer made of disordered InGaP without a natural superlattice structure, and a cap layer made of GaAs are successively stacked on a compound semiconductor substrate. A gate electrode is formed on a part of the Schottky layer exposed at the opening of the cap layer. Source and dram electrodes are formed on the cap layer. The thickness of the Schottky layer is set at about 8 nm or less. As a result, the reverse breakdown voltage of the gate electrode becomes larger than that in the case of a Schottky layer made of AlGaAs.
Abstract:
A via hole having a bottom is formed in a substrate and then a conductor layer is formed at least over a sidewall of the via hole. Thereafter, the substrate is thinned by removing a portion of the substrate opposite to another portion of the substrate in which the via hole is formed such that the conductor layer is exposed.
Abstract:
The present invention provides a fiber optic connector comprising a fiber pressing member and a substrate having a part A with multiple fiber arranging grooves in which bare portion of optical fibers are fixed, and a part B in which coated portion of optical fibers are fixed, and its manufacturing method. The connector enables to prevent an increase in transmission loss or breakage of the optical fibers by reducing the localized stress on the fibers from the rear end of the fiber pressing member and the rear end edge of the fiber arranging grooves.
Abstract:
An optical connector for connecting optical fibers, comprises: a guide-groove substrate having grooves for positioning optical fibers and guide pins; an upper plate having groove portions each for covering the guide pins positioned in the guide grooves of the guide-groove substrate; elastic guide-pin pressing members each provided in the groove portions of the upper plate above portions where the guide pin grooves are in contact with the guide pins. In such a arrangement, it is preferable to forman oxide film on said V-grooves of the guide-groove substrate at least in the vicinity of contact points between the guide pins and the V-grooves. The optical connector further includes a resin molding portion for surrounding the substrate and the upper plate, the resin molding portion including a pair of opposite opened portions at top and bottom surfaces thereof.
Abstract:
An optical connector comprises an optical fiber guide member consisting of a grooved substrate and a cover plate, the substrate having optical fiber guide grooves and guide pin grooves cut into its top surface, and the cover plate being joined to the substrate to cover the optical fiber guide grooves but to leave at least part of the guide pin grooves exposed; a pressing member which is movable in the vertical direction of the guide pin grooves and is provided above the guide pin grooves to elastically press guide pins which are positioned on the guide pin grooves downward; and coupling clips enhancing the force of elastic pressure being exerted on the guide pins so as to secure the joining of optical fibers.
Abstract:
A sleeve for an optical connector into which a ferrule arranged to hold an optical fiber is to be inserted, and by which an optical connector in which the sleeve is to be housed can be reduced in size in a direction that the optical connector is fitted into a counterpart optical connector. A sleeve for an optical connector includes a portion having a tube shape, into which a ferrule is to be inserted, and a hook portion at one end of the sleeve, the hook portion protruding in a diameter direction of the tube-shaped portion.