摘要:
A semiconductor film having a crystalline structure is formed by using a metal element that assists the crystallization of the semiconductor film, and the metal element remaining in the film is effectively removed to decrease the dispersion among the elements. The semiconductor film or, typically, an amorphous silicon film having an amorphous structure is obtained based on the plasma CVD method as a step of forming a gettering site, by using a monosilane, a rare gas element and hydrogen as starting gases, the film containing the rare gas element at a high concentration or, concretely, at a concentration of 1×1020/cm3 to 1×1021/cm3 and containing fluorine at a concentration of 1×1015/cm3 to 1×1017/cm3.
摘要翻译:通过使用有助于半导体膜的结晶化的金属元素形成具有晶体结构的半导体膜,并且有效地去除留在膜中的金属元素以降低元件之间的分散。 通过使用甲硅烷,稀有气体元素和氢作为起始气体,通过等离子体CVD法作为形成吸杂位置的工序,得到半导体膜,或通常为非晶质的硅膜, 高浓度的稀有气体元素或具体地,浓度为1×10 20 / cm 3至1×10 21 / cm 3 3,并含有浓度为1×10 15 / cm 3至1×10 17 / cm 3以上的氟 >。
摘要:
It is intended to achieve the reduction in number of heat treatments carried out at high temperature (at least 600° C.) and the employment of lower temperature processes (600° C. or lower), and to achieve step simplification and throughput improvement. In the present invention, a barrier layer (105), a second semiconductor film (106), and a third semiconductor layer (108) containing an impurity element (phosphorus) that imparts one conductive type are formed on a first semiconductor film (104) having a crystalline structure. Gettering is carried out in which the metal element contained in the first semiconductor film (104) is allowed to pass through the barrier layer (105) and the second semiconductor film (106) by a heat treatment to move into the third semiconductor film (107). Afterward, the second and third semiconductor films (106) and (107) are removed with the barrier layer (105) used as an etching stopper.
摘要:
Formation of LDD structures and GOLD structures in a semiconductor device is conventionally performed in a self aligning manner with gate electrodes as masks, but there are many cases in which the gate electrodes have two layer structures, and film formation processes and etching processes become complex. Further, in order to perform formation of LDD structures and GOLD structures only by processes such as dry etching, the transistor structures all have the same structure, and it is difficult to form LDD structures, GOLD structures, and single drain structures separately for different circuits. By applying a photolithography process for forming gate electrodes to photomasks or reticles, in which supplemental patterns having a function of reducing the intensity of light and composed of diffraction grating patterns or translucent films, are established, GOLD structure, LDD structure, and single drain structure transistors can be easily manufactured for different circuits through dry etching and ion injection process steps.
摘要:
There is provided a method by which lightly doped drain (LDD) regions can be formed easily and at good yields in source/drain regions in thin film transistors possessing gate electrodes covered with an oxide covering. A lightly doped drain (LDD) region is formed by introducing an impurity into an island-shaped silicon film in a self-aligning manner, with a gate electrode serving as a mask. First, low-concentration impurity regions are formed in the island-shaped silicon film by using rotation-tilt ion implantation to effect ion doping from an oblique direction relative to the substrate. Low-concentration impurity regions are also formed below the gate electrode at this time. After that, an impurity at a high concentration is introduced normally to the substrate, so forming high-concentration impurity regions. In the above process, a low-concentration impurity region remains below the gate electrode and constitutes a lightly doped drain region.
摘要:
An exposure mask provided with a semi-transparent film, capable of forming a resist in which a convex portion is not formed in an end portion and the end portion has gentle shape. In an exposure mask having a first region and a second region having different phase and transmittance with respect to exposure light, the phase difference Δθ with respect to exposure light which transmits though the first region and the second region and the transmittance n of the second region with respect to exposure light are defined so as to satisfy following formula 1. Δθ≦arccos (−√n/2) [Formula 1]Accordingly, a resist having regions with different thicknesses and having gentle shape in an edge can be formed. By performing a process such as etching with this resist, regions having different thicknesses can be formed in a self-aligned manner.
摘要:
A first amorphous semiconductor film is formed on an insulating surface. A catalyst element for promoting crystallization is added thereto. Thereafter, by a first heat treatment in an inert gas, a first crystalline semiconductor film is formed. A barrier layer and a second semiconductor layer are formed on the first crystalline semiconductor film. The second semiconductor layer contains a rare gas element at a concentration of 1×1019 to 2×1022/cm3, preferably 1×1020 to 1×1021/cm3 and oxygen at a concentration of 5×1017 to 1×1021/cm3. Subsequently, by a second treatment in an inert gas, the catalyst element remaining in the first crystalline semiconductor film is moved to the second semiconductor film.
摘要翻译:在绝缘表面上形成第一非晶半导体膜。 加入促进结晶的催化剂元素。 此后,通过在惰性气体中的第一次热处理,形成第一晶体半导体膜。 在第一结晶半导体膜上形成阻挡层和第二半导体层。 第二半导体层含有浓度为1×10 19至2×10 22 / cm 3的稀有气体元素,优选为1×10 20, 浓度为5×10 17至1×10 21 / cm 3的氧气和1×10 12 / cm 3 3 SUP>。 随后,通过在惰性气体中的第二次处理,残留在第一结晶半导体膜中的催化剂元素移动到第二半导体膜。
摘要:
To provide a semiconductor device having a circuit with high operating performance and high reliability, and improve the reliability of the semiconductor device, thereby improving the reliability of an electronic device having the same. The aforementioned object is achieved by combining a step of crystallizing a semiconductor layer by irradiation with continuous wave laser beams or pulsed laser beams with a repetition rate of 10 MHz or more, while scanning in one direction; a step of photolithography with the use of a photomask or a leticle including an auxiliary pattern which is formed of a diffraction grating pattern or a semi-transmissive film having a function of reducing the light intensity; and a step of performing oxidation, nitridation, or surface-modification to the surface of the semiconductor film, an insulating film, or a conductive film, with high-density plasma with a low electron temperature.
摘要:
Provided is a technique of effectively removing a metallic element that has catalytic action in terms of the crystallization of a semiconductor film and remains in a semiconductor film obtained using the metallic element. With the technique of the present invention, to remove a catalytic element used to crystallize a semiconductor film having an amorphous structure, gettering is completed by forming a region or a semiconductor film, to which a rare gas element is added, and by having the catalytic element move to the formed region or semiconductor film.
摘要:
In a crystallization process of an amorphous semiconductor film, a first polycrystalline semiconductor film, in which amorphous regions are dotted within the continuous crystal region, is obtained by performing heat treatment after introducing a metallic element which promotes crystallization on the amorphous semiconductor film. At this point, the amorphous regions are kept within a predetermined range. A laser beam having a wave length region, which can give more energy to the amorphous region than to the crystal region, is irradiated to the first polycrystalline semiconductor film, it is possible to crystallize the amorphous region without destroying the crystal region. If a TFT is manufactured based on a second polycrystalline semiconductor film, which is obtained through the above-mentioned crystallization processes, the TFT with high electric characteristics and less fluctuation can be obtained.
摘要:
A technique, where a semiconductor film having a crystal structure is obtained using a metal element that helps crystallization of the semiconductor film, then that metal element remained in the film is effectively removed, as a result variation among elements is reduced, is provided. In a process for forming a gettering site, a semiconductor film containing a rare-gas element is formed, then an anti-diffusion film for preventing diffusion of the rare-gas element is formed, thereby the metal element in another semiconductor film is effectively removed, particularly in a gettering that is a heating treatment at a high temperature of 600° C. or more.