Abstract:
A system for identifying a fault in a light source is presented. The system includes at least one luminaire that includes the light source configured to emit light. Also, the at least one luminaire includes a monitoring device disposed proximate to the light source. The monitoring device includes a sensing unit configured to measure an amount of light emitted by the light source, and a squawk unit configured to generate a squawk signal based on the amount of light emitted from the light source, where the squawk signal is indicative of the fault in the light source. Further, the system includes a diagnostic unit communicatively coupled to the at least one luminaire and configured to determine the fault in the light source based on the squawk signal, and transmit a termination signal to the squawk unit to decouple an electrical power supply from the light source.
Abstract:
Systems and methods for communicating ultrasound probe location and image information are provided. One system includes an ultrasound device coupled with an ultrasound probe and configured to acquire ultrasound images of a subject. The ultrasound imaging system also includes at least one camera configured to acquire (i) scene information including ultrasound imagery of the ultrasound probe with the subject during an image scan and (ii) ancillary probe data. The ultrasound imaging system further includes a processor configured to receive the ultrasound images and the ancillary probe data and a multiplexing unit configured to receive (i) the ultrasound images and ancillary probe data from the processor and (ii) the scene information from the camera, wherein the multiplexing unit is further configured to associate in time the ultrasound images, ancillary probe data and scene information. The ultrasound imaging system additionally includes a communication device.
Abstract:
Systems and methods for communicating ultrasound data are provided. One method includes monitoring over time estimates of bandwidth of a channel communicatively coupling an imaging location with another location remote from the imaging location and communicating the estimates to a system at the imaging location. The method also includes identifying at least one of a region-of-interest (ROI) mask or one or more transmission parameters for the channel and adjusting at least one of the ROI mask or the one or more transmission parameters based on the monitored estimates of the bandwidth for communicating the medical images.
Abstract:
Apparatus, systems and articles of manufacture to provide improved, dynamic medical body area network communication among available frequency bands in a healthcare environment are disclosed and described. An example apparatus includes at least one processor to determine, based on a plurality of control messages indicating availability of a second frequency spectrum and timing of receipt of the plurality of control messages, a first mode or a second mode for medical body area network (MBAN) communication, the first mode specifying MBAN communication in a first frequency spectrum and the second mode specifying MBAN communication in the first frequency spectrum and the second frequency spectrum. The example apparatus includes at least one communication interface to receive the control messages and transmit an indication of a missed control message.
Abstract:
A smart street lighting system and method employs a plurality of street lights having a luminaire, a luminaire associate and a support pole. A communications module is contained within the luminaire associates and a power line is contained within the support poles. The power line is coupled to the communications module, the luminaire associate and the luminaire, and a steerable millimeter wave radar operatively coupled to the communications module. The communications module operates in a radio frequency network in a frequency range of 57-64 GHz. The steerable millimeter wave radar provides a signal reflected from a target that may be received by one of the luminaire associates within the system. A powerline communications system interfaces with the radio frequency network to provide communications between the communications modules in the street lights and the PLC system.
Abstract:
A method for navigating within a retail establishment includes: generating and distributing an encoded identity to each of a plurality of location beacons, the encoded identity being effective during a time interval; broadcasting the encoded identity from each of the plurality of location beacons to a user device within a retail establishment; mapping the encoded identity of each of the plurality of location beacons to a location thereof; generating a masked mapping by combining the mapping with a time interval mask; storing the masked mapping in a website accessible to the user device; and broadcasting an srw signal to the user device within the retail establishment, the srw signal comprising information for recovering the mapping from the masked mapping in the web site; whereby navigation via the location beacons is enabled.
Abstract:
A patient monitoring system includes at least two wireless sensing devices, each configured to measure a different physiological parameter from a patient and wirelessly transmit a parameter dataset. The system further includes a receiver that receives each parameter dataset, a processor, and a monitoring regulation module executable on the processor to assign one of the at least two wireless sensing devices as a dominant wireless sensing device and at least one of the remaining wireless sensing devices as a subordinate wireless sensing device. The physiological parameter measured by the dominant wireless sensing device is a key parameter and the parameter dataset transmitted by the dominant wireless sensing device is a key parameter dataset. The key parameter dataset from the dominant wireless sensing device is processed to determine a stability indicator. The subordinate wireless sensing device is then operated based on the stability indicator for the key parameter.
Abstract:
A system includes wireless sensor devices monitoring a patient, a gateway device providing dual-frequency adaptive protocol time synchronization signals to the sensor devices, the time synchronization signals including a communication frame structure having time slots including two beacon signal time slots and a plurality of data slots, where the sensor devices transmit respective patient data a first time interleaved within a first data slot and a second time interleaved within a second data slot, the first interleaved data transmission and the second interleaved data transmission are each transmitted at respective different frequencies provided to the sensor devices in beacon signals received from the gateway device. The first interleaved data transmission includes both current data and previous data from the at least two wireless sensor devices, and a frequency agility pattern separates adjacent channels by a respective predetermined frequency offset. A method and non-transitory medium are disclosed.
Abstract:
The invention is focused toward enhancing a patient's mobility by providing seamless information/data transfer between medical monitoring devices such as a patient monitor, telemetry hubs, or another mobile monitoring system. The information or data, which are transferred among the medical devices include, but are not limited to, patient demographic information, wireless network, or pairing information. A set of wireless sensors (e.g. ECG, NIBP, Temp, SpO2), which are located on a patient's body, are connected wirelessly to a patient monitor, which is not a mobile device. When a clinician needs to move the patient from one location to a another location, the clinician brings the mobile monitor close to the fixed monitor to transfer the patient and wireless network information to the mobile monitor automatically. This enables the transfer of connected on-body wireless sensors from one medical device to another medical device without physically detaching them from a patient's body.
Abstract:
A method for generating a sampled plethysmograph data, includes measuring a plethysmograph waveform indicative of a first cardiac cycle and a second cardiac cycle, each cycle including a systolic waveform and a diastolic waveform. The method further includes estimating a first start time and a first duration for the systolic waveform of the first cardiac cycle and computing a plurality of amplitudes at a plurality of time instants for the first duration. The method further includes determining a second start time and a second duration of the systolic waveform of the second cardiac cycle. The method also includes assigning the second cardiac cycle, the second start time, and the second duration to the first cardiac cycle, the first start time, and the first duration respectively. The method further includes iteratively performing the steps of measuring, estimating, computing, determining and assigning for the plurality of cardiac cycles acquired sequentially in time.