Abstract:
Provided are methods and systems of managing vertical handoffs in a wireless communication network. Embodiments include analyzing wireless device usage to determine usage patterns, which may include locations and times at which the wireless device is typically accessing the network. The network may recognize points in the usage patterns at which signal quality parameters are typically reduced. Such reductions in signal quality parameters may lead to inefficient vertical handoffs. The network may decrease adverse effects of inefficient vertical handoffs by reducing ping ponging, selecting links between wireless devices and network nodes, or indicating to a user of the wireless device that delays and/or data loss may occur.
Abstract:
Some embodiments are directed to an Internet of Things (“IoT”) associate to facilitate implementation of a digital twin of a twinned physical system. The IoT associate may include a communication port to communicate with at least one component, the at least one component comprising a sensor or an actuator associated with the twinned physical system, and a gateway to exchange information via the IoT. A computer processor and local data storage, coupled to the communication port and gateway, may receive a digital twin model from a data warehouse via the IoT. The computer processor may be programmed to, for at least a selected portion of the twinned physical system, execute the digital twin model in connection with the at least one component and operation of the twinned physical system.
Abstract:
The present disclosure relates to a system includes a Luneburg lens antenna system configured to selectively provide wireless communication to a plurality of stations, and one or more sensors configured to collect data related to an occupancy status of each of the plurality of stations. The system also includes a controller coupled to the Luneburg lens antenna system and the one or more sensors, wherein the controller is configured to determine the occupancy status of each of the plurality of stations based on the data collected by the one or more sensors, and the controller is further configured to change operation of the Luneburg lens antenna system based on the occupancy status of each of the plurality of stations.
Abstract:
A method and system for geolocation using a street light system having transponding technology. A predetermined band of radio frequencies employing spread spectrum technology is used to identify locations relative to an individual street light.
Abstract:
Provided are methods and systems of managing vertical handoffs in a wireless communication network. Embodiments include analyzing wireless device usage to determine usage patterns, which may include locations and times at which the wireless device is typically accessing the network. The network may recognize points in the usage patterns at which signal quality parameters are typically reduced. Such reductions in signal quality parameters may lead to inefficient vertical handoffs. The network may decrease adverse effects of inefficient vertical handoffs by reducing ping ponging, selecting links between wireless devices and network nodes, or indicating to a user of the wireless device that delays and/or data loss may occur.
Abstract:
Techniques are provided for increasing spectral efficiency over data channels in a storage or communication system. In some embodiments, data may be encoded and transmitted over multiple channels. The transmitted data from the multiple channels may be considered together as a channel bundle, thereby increasing the edge transitions of the group of signals to improve clock recovery and reduce coding constraints. In some embodiments, the channel bit size is reduced to maximize data rates based on the reduced coding constraints. Furthermore, the channel bundle has only one channel with timing markers, so that a receiver may receive information from the channel bundle and recover clocking based on the timing markers in the one channel.
Abstract:
A street lighting fixture and street lamp used in street lighting containing an accelerometer that is used to detect and characterize acceleration events on a street lighting fixture. The accelerometer readings may be combined with GPS technology to determine a relocation of the street lighting fixture.
Abstract:
Systems and methods for communicating ultrasound probe location and image information are provided. One system includes an ultrasound device coupled with an ultrasound probe and configured to acquire ultrasound images of a subject. The ultrasound imaging system also includes at least one camera configured to acquire (i) scene information including ultrasound imagery of the ultrasound probe with the subject during an image scan and (ii) ancillary probe data. The ultrasound imaging system further includes a processor configured to receive the ultrasound images and the ancillary probe data and a multiplexing unit configured to receive (i) the ultrasound images and ancillary probe data from the processor and (ii) the scene information from the camera, wherein the multiplexing unit is further configured to associate in time the ultrasound images, ancillary probe data and scene information. The ultrasound imaging system additionally includes a communication device.
Abstract:
A system is provided for operating a railway network including a first railway vehicle during a trip along track segments. The system includes a first element for determining travel parameters of the first railway vehicle, a second element for determining travel parameters of a second railway vehicle relative to the track segments to be traversed by the first vehicle during the trip, a processor for receiving information from the first and the second elements and for determining a relationship between occupation of a track segment by the second vehicle and later occupation of the same track segment by the first vehicle and an algorithm embodied within the processor having access to the information to create a trip plan that determines a speed trajectory for the first vehicle. The speed trajectory is responsive to the relationship and further in accordance with one or more operational criteria for the first vehicle.
Abstract:
According to some embodiments, system and methods are provided comprising receiving, via a communication interface of a part parameter dictionary module comprising a processor, geometry data for a plurality of geometric structures forming a plurality of parts, wherein the parts are manufactured with an additive manufacturing machine; determining, using the processor of the part parameter dictionary module, a feature set for each geometric structure; generating, using the processor of the part parameter dictionary module, one of a coupon and a coupon set for the feature set; generating an optimized parameter set for each coupon, using the processor of the part parameter dictionary module, via execution of an iterative learning control process for each coupon; mapping, using the processor of the part parameter dictionary module, one or more parameters of the optimized parameter set to one or more features of the feature set; and generating a dictionary of optimized scan parameter sets to fabricate geometric structures with a material used in additive manufacturing. Numerous other aspects are provided.