Abstract:
A system, includes a wireless communication network that transmits data over available radio frequency channels, one or more medical sensors that are associated with a patient and that detect physiological data from the patient, and one or more communication hubs associated with the patient and that receive the detected physiological data from the one or more medical sensors and scan the available radio frequency channels around the one or more communication hubs to generate radio frequency data indicative of a measured signal strength in each available radio frequency channel of the of available radio frequency channels. The one or more communication hubs wirelessly transmit the physiological data and the radio frequency data via one or more of the of available radio frequency channels. The system further includes a processor and a memory storing instructions, such that the instruction cause the processor to receive the radio frequency data and provide communications instructions to the one or more communication hubs to communicate the physiological data over a different available radio frequency channel based on the radio frequency data.
Abstract:
Apparatus, systems and articles of manufacture to provide improved, automatic, and dynamic frequency selection for and/or by medical body area network apparatus are disclosed. Certain examples provide a medical body area network apparatus. The example apparatus includes a radio to receive a beacon signal and a processor to process the beacon signal to determine a location of the apparatus. The example processor is configured to at least: when the beacon signal indicates a first location, communicate via a first frequency band; and when the beacon signal indicates a second location, communicate via a second frequency band.
Abstract:
Apparatus, systems and articles of manufacture to provide improved, automatic, and dynamic frequency selection for and/or by medical body area network apparatus are disclosed. Certain examples provide a medical body area network apparatus. The example apparatus includes a radio to receive a beacon signal and a processor to process the beacon signal to determine a location of the apparatus. The example processor is configured to at least: when the beacon signal indicates a first location, communicate via a first frequency band; and when the beacon signal indicates a second location, communicate via a second frequency band.
Abstract:
A method for controlling data flow in a wireless body area network includes transmitting sensor data from a plurality of sensor nodes to a gateway via a first transmission channel. The method further includes transmitting beacon data from the gateway to the plurality of sensor nodes via the first transmission channel. The method also includes determining channel packet loss information of the first transmission channel based on at least one of a beacon packet loss information included in the sensor data and a sensor packet loss information included in the beacon data. The method further includes comparing the channel packet loss information with a packet loss threshold. The method also includes switching flow of the sensor data and the beacon data through a second transmission channel instead of the first transmission channel, if the channel packet loss information is greater than the packet loss threshold.
Abstract:
A patient monitoring system includes at least two wireless sensing devices, each configured to measure a different physiological parameter from a patient and wirelessly transmit a parameter dataset. The system further includes a receiver that receives each parameter dataset, a processor, and a monitoring regulation module executable on the processor to assign one of the at least two wireless sensing devices as a dominant wireless sensing device and at least one of the remaining wireless sensing devices as a subordinate wireless sensing device. The physiological parameter measured by the dominant wireless sensing device is a key parameter and the parameter dataset transmitted by the dominant wireless sensing device is a key parameter dataset. The key parameter dataset from the dominant wireless sensing device is processed to determine a stability indicator. The subordinate wireless sensing device is then operated based on the stability indicator for the key parameter.
Abstract:
A smart street lighting system and method employs a plurality of street lights having a luminaire, a luminaire associate and a support pole. A communications module is contained within the luminaire associates and a power line is contained within the support poles. The power line is coupled to the communications module, the luminaire associate and the luminaire, and a steerable millimeter wave radar operatively coupled to the communications module. The communications module operates in a radio frequency network in a frequency range of 57-64 GHz. The steerable millimeter wave radar provides a signal reflected from a target that may be received by one of the luminaire associates within the system. A powerline communications system interfaces with the radio frequency network to provide communications between the communications modules in the street lights and the PLC system.
Abstract:
Apparatus, systems and articles of manufacture to provide improved, automatic, and dynamic frequency selection for and/or by medical body area network apparatus are disclosed. Certain examples provide a medical body area network apparatus. The example apparatus includes a radio to receive a beacon signal and a processor to process the beacon signal to determine a location of the apparatus. The example processor is configured to at least: when the beacon signal indicates a first location, communicate via a first frequency band; and when the beacon signal indicates a second location, communicate via a second frequency band.
Abstract:
Apparatus, systems and articles of manufacture to provide improved, automatic, and dynamic frequency selection for and/or by medical body area network apparatus are disclosed. Certain examples provide a medical body area network apparatus. The example apparatus includes a radio to receive a beacon signal and a processor to process the beacon signal to determine a location of the apparatus. The example processor is configured to at least: when the beacon signal indicates a first location, communicate via a first frequency band; and when the beacon signal indicates a second location, communicate via a second frequency band.
Abstract:
A method for controlling an illumination device is provided. The method includes obtaining an image of an illumination device, thereby capturing an illumination pattern generated by the illumination device based on a visible light communication technique. The method also includes identifying the illumination pattern based on the image. The method further includes determining a unique identification code of the illumination device based on the illumination pattern. The method also includes representing the illumination device in a computer-generated image based on the unique identification code. The method further includes controlling the illumination device using a physical gesture-based graphic user interface.
Abstract:
A method and system for geolocation using a street light system having transponding technology. A predetermined band of radio frequencies employing spread spectrum technology is used to identify locations relative to an individual street light.