Abstract:
A wireless mobile communication (WMC) device may discover available networks, and available local and/or remote resources. The WMC device may configure routes utilizing one or more of discovered resources and one or more available networks. The routes may be utilized to performed operations requested via the WMC device. A standardized language and/or protocol may be utilized in discovering and/or communicating with available resources and/or networks. The standardized language and/or protocol may enable commonality among the discovered networks and/or resources, and encryption of data communicated through the established routes. The standardized language and/or protocol may be updated and/or modified to incorporate new resources either by direct interactions between said new resources and the WMC device, or via existing available resources and/or networks. The discovery of resources and/or establishment of routes may be user-triggered, or it may be based on user preference information.
Abstract:
Systems and methods are provided that allow a touch sensor, such as a mutual capacitive touch panel, to switch from an operative transmit (TX) frequency at which the mutual capacitive touch panel is driven to an alternative TX frequency. When switching to an alternative TX frequency, an alternative baseline capacitance value corresponding to the alternative TX frequency may be utilized to determine whether a touch event has occurred on the mutual capacitive touch panel. Frame scans can be repeatedly performed at the operative TX frequency and the alternative TX frequency in rapid succession, and an average difference of the frame scans can be calculated and utilized to generate the alternative baseline capacitance value which may be insensitive to sudden ambient changes and moving touch events affecting the mutual touch capacitive panel.
Abstract:
A battery includes one or more rechargeable cells, a wireless power coil, a battery charger circuit, and may further include an RFID module. The wireless power coil is operable to generate an AC voltage from a wireless power electromagnetic field. The battery charger circuit is operable to generate a battery charge voltage from the AC voltage in accordance with a battery charge control signal and, when enabled, to charge the one or more rechargeable cells via the battery charge voltage. If the battery further includes the RFID module, it is operable to generate the battery charge control signal and communicate with a wireless power transmitter device.
Abstract:
A multiservice communication device includes a plurality of transceivers that wirelessly transceive network data with a corresponding plurality of networks in accordance with a corresponding plurality of network protocols, wherein at least one of the plurality of transceivers further transceives control channel data with a remote management unit contemporaneously with the network data via a logical control channel carried using the corresponding one of the plurality of network protocols, wherein the control channel data includes local control data sent to the management unit and remote control data received from the management unit. A processing module processes the remote control data and generates a least one control signal in response thereto, the at least one control signal for adapting at least one of the plurality of transceivers based on the remote control data.
Abstract:
A multiservice communication device includes a plurality of transceivers that wirelessly transceive network data with a corresponding plurality of networks in accordance with a corresponding plurality of network protocols, wherein the plurality of transceivers includes at least one cognitive radio transceiver that is configured based on cognitive transceiver configuration data received from a management unit in communication with the multiservice communication device via a control channel.
Abstract:
A configurable antenna structure includes a plurality of switches, a plurality of antenna components, and a configuration module. The configuration module is operable to configure the plurality of switches and the plurality of antenna components into a first antenna for receiving a multiple frequency band multiple standard (MFBMS) signal. The configuration module continues processing by identify a signal component of interest of a plurality of signal components of interest within the MFBMS signal. The configuration module continues processing by configuring the plurality of switches and the plurality of antenna components into a second antenna.
Abstract:
A Bluetooth low energy (BLE) device receives advertising packets from an advertising BLE device. The BLE device filters the received advertising packets utilizing hardware to search for the advertiser. If the advertiser is not found by the hardware, the packet filtering continues utilizing firmware. Device identity information, comprising non-private and/or private device identities, of preferred BLE devices is partitioned to form a different white list for the hardware, firmware, and host, respectively, to concurrently support privacy and white listing. If the advertiser is found by the hardware, the hardware sends a response to the advertiser following a successful CRC check performed in the hardware. If the advertiser is found by the firmware, the device identity information of the advertiser is inserted in the white list for the hardware. The host may be awakened based on the device configuration and/or attribute type information of the received advertising packets.
Abstract:
A network management module includes a network interface module, memory, and a processing module. The network interface module is operable for coupling the network management module to a vehicle communication network. The processing module is operable to manage a global vehicle network communication protocol that includes instituting a content-based network packet processing protocol and managing the vehicle communication network to support the network packet processing protocol. The content-based network packet processing protocol includes determining content type of a packet, determining a processing requirement of the packet, and prioritizing execution of the processing requirement based on the content type.
Abstract:
A battery includes one or more rechargeable cells, a wireless power coil, a battery charger circuit, and may further include an RFID module. The wireless power coil is operable to generate an AC voltage from a wireless power electromagnetic field. The battery charger circuit is operable to generate a battery charge voltage from the AC voltage in accordance with a battery charge control signal and, when enabled, to charge the one or more rechargeable cells via the battery charge voltage. If the battery further includes the RFID module, it is operable to generate the battery charge control signal and communicate with a wireless power transmitter device.
Abstract:
A wireless power system includes a wireless power transmit and receive units. The wireless power transmit unit includes a wireless power transmit circuit that generates a wireless power magnetic field and a transmit unit transceiver that transceives a communication regarding the wireless power magnetic field in accordance with a control channel protocol. The wireless power receive unit includes a wireless power receive circuit, a transceiver, and a processing module. The wireless power receive circuit converts the wireless power magnetic field into a voltage. The receive unit processing module is operable to: identify the control channel protocol; determine whether the receive unit transceiver is capable of communication using the control channel protocol; and, when the receive unit transceiver is capable of communication using the control channel protocol, coordinate configuration of the receive unit transceiver to transceive the communication regarding the wireless power magnetic field via the control channel.