Abstract:
A liquid crystal lens comprises a first substrate and a second substrate which are aligned-and-assembled, and a liquid crystal layer disposed between the first and second substrates, the first substrate comprises a first transparent substrate base, and a first alignment film comprising first alignment grooves, the first alignment film is provided on the first transparent substrate base, the first alignment grooves extend to the edge of the liquid crystal lens in annular shapes with their geometric centers located at the geometric center of the liquid crystal lens, the second substrate comprises a second transparent substrate base, and a second alignment film comprising second alignment grooves corresponding to the first alignment grooves, and the second alignment film is provided on the second transparent substrate base, the liquid crystal layer is disposed between the first and second alignment films. The liquid crystal lens is applied to liquid crystal glasses.
Abstract:
A LCD device comprising the liquid crystal cell and a surface modification method for an IR material are provided. The IR material is obtained via the surface modification method, and a component comprising the IR material is disposed in the liquid crystal cell. As the liquid crystal cell can emit infrared light, it is beneficial for healthy. The surface modified IR material is compatible and has optimal matching property with the structure of the liquid crystal cell, the heat exchange capacity between the IR material and the backlight as well the ambient light can be improved without compromising the performance of the LCD device, and the surface modified IR material will emit far-IR light of specific wavelength with higher emissivity.
Abstract:
The present disclosure relates to the field of display technology, and provides a display substrate, its driving method and a display device, so as to reduce the power consumption of the display device. The display substrate includes a plurality of first transparent regions arranged in an array form. Each first transparent region serves as a subpixel, and a pixel includes at least two adjacent subpixels. The subpixels in each pixel correspond to backlight lamps in different colors respectively. The display substrate further includes a plurality of light-shielding structures each corresponding to one of the subpixels and configured to adjust a light transmission rate of the subpixel.
Abstract:
A display panel and a method of manufacturing the same, a display device and a wearable intelligent device are disclosed. The display panel includes: a substrate; a display unit arranged on the substrate; a monitoring light emitting unit formed on a side of the substrate away from the display unit, for emitting monitoring light toward an object in a direction facing away from the display unit; and a light receiving unit formed on the side of the substrate away from the display unit, for receiving reflected monitoring light from the object and generating monitoring data of the object based to the reflected monitoring light. With technique solutions of the invention, devices for monitoring a user's body conditions can be integrated on the back of the substrate, that is, be integrated with the substrate, such that the display panel has a more compact structure and a more aesthetic appearance.
Abstract:
Embodiments of the present invention relate to a liquid crystal display panel and a method of manufacturing the same, and a display device. The liquid crystal display panel includes: an array substrate and an opposite substrate, a polarized light source structure disposed on a side of the array substrate and capable of emitting linearly polarized light; and a polarization sheet disposed on the opposite substrate; wherein the polarized light source structure includes a first electrode layer, a second electrode layer and a quantum rod contained layer therebetween; the quantum rod contained layer may emit linearly polarized light a polarization direction parallel to an absorption axis of the polarization sheet.
Abstract:
The invention provides a mobile equipment protective sleeve and a mobile equipment. The mobile equipment protective sleeve comprises: a bottom plate and a protective cover plate that is connected with and set opposite to the bottom plate, and a lenticular lens or a slit grating is located at a display region of the protective cover plate; the mobile equipment protective sleeve is made of a resin composition containing a functional material, or a surface of the mobile equipment protective sleeve is coated with a functional material. The functional material is an inorganic powder with an organic modification layer on a surface thereof, and the modification layer is generated by reacting a dianhydride with a diamine.
Abstract:
An annular multi-surface display device includes: a display panel, with two opposite sides of the display panel being bent toward a back surface of a display area respectively and being sealed together, so that a cross section of the display panel which is obtained along a direction perpendicular to the two opposite sides forms a closed annular structure; where an outer surface of the display panel with the cross section being the closed annular structure is a tubular surface, and a display surface of the annular multi-surface display device is the outer surface of the display panel.
Abstract:
A display screen and a portable device are disclosed. The display screen includes a display region and a non-display region surrounding the display region, the display region includes at least one transparent antenna structure, the antenna structure includes an antenna and a capacitor which are located in a same layer, and the capacitor is electrically connected to the antenna. The portable device includes the display screen. The display screen and the portable device simplify the manufacturing process and also reduce the manufacturing difficulty.
Abstract:
The present disclosure discloses an encapsulation system and an encapsulation method, the encapsulation system including a thickness detection unit, an output control unit and an energy output unit, the thickness detection unit being connected with the output control unit, and the output control unit being connected with the energy output unit. The thickness detection unit is configured to detect a thickness of an encapsulant at a to-be-heated location in a component to be encapsulated and generate corresponding thickness information. The output control unit is configured to generate corresponding output control information depending on the thickness information. The energy output unit is configured to output, depending on the output control information, to the encapsulant at the to-be-heated location energy for heating the encapsulant.
Abstract:
The present disclosure provides an OLED display device and its manufacturing method. The OLED display device includes an organic light-emitting layer and a plurality of elements arranged one on another at a light-exiting side of the organic light-emitting layer. At least one transparent light extraction layer is arranged between the elements, and/or between the organic light-emitting layer and the element adjacent to the organic light-emitting layer, and/or at a light-exiting surface of the element farthest away from the organic light-emitting layer. A refractive index of the organic light-emitting layer and/or a refractive index of the element adjacent to the light extraction layer, and a refractive index of the light extraction layer decrease successively in a light emergent direction, and the refractive index of the light extraction layer is greater than a refractive index of air.