Abstract:
Methods and techniques are described for initiating a periodic and triggered location in a target UE. After LCS Client requests initiation of periodic and triggered location reporting from the UE, two intermediate responses are returned by a network. A first response indicates that the periodic and triggered location request has been received and accepted b the network. A second response indicates that periodic and triggered location has been activated in the UE. Additionally, a periodic and triggered location request may include a maximum event sampling interval and a maximum reporting interval and one or more location triggers. The maximum event sampling interval can limit UE power consumption and the maximum reporting interval can detect when periodic and triggered location is no longer active in a UE. The location triggers may include periodic reporting, reporting using area events or reporting based on UE motion.
Abstract:
Methods and techniques are described for supporting location services for a user equipment (UE) that is using Narrowband Internet of Things radio access or Cellular Internet of Things features to access a wireless network. The techniques include enabling support for a last known location of a UE, using previously obtained location measurements, when a UE is not reachable from a wireless network for positioning. The techniques also include limiting positioning protocol interaction between a UE and a location server via a reduced maximum message size, reduced message volume and longer response and retransmission timers. The techniques further include enabling a UE to obtain location measurements when not connected to a wireless network, enabling periodic and triggered location of a UE in which a UE evaluates location triggers while not connected to a wireless network, enabling use of deferred location and enabling improved location security.
Abstract:
Techniques for supporting periodic and other location services with Secure User Plane Location (SUPL) and other location architectures are described. The techniques can provide position estimates for a SUPL enabled terminal (SET) to a SUPL agent periodically and/or based on trigger events. A Home SUPL Location Platform (H-SLP) receives from the SUPL agent a request for position estimates for the SET. The H-SLP starts a SUPL location session with the SET. For each of at least one reporting event during the location session, the H-SLP obtains a position estimate for the SET and sends the position estimate to the SUPL agent. The position estimate may be derived by the SET and sent to the H-SLP. Alternatively, the position estimate may be derived by the H-SLP based on measurements from the SET.
Abstract:
Methods, systems, and devices are described for wireless communication. A wireless device such as an in-vehicle system (IVS) may transmit an emergency call (eCall) message to a third party eCall server using a communication session which may be packet based or circuit based. The eCall message may include session information and telematics data. The third party eCall server may relay the session information and telematics data to a public safety answering point (PSAP). For example, the third party eCall server may generate an automatic text-to-speech message that is transmitted to the PSAP over a public communications network. In some cases, the third party eCall server may transmit a response to the wireless device including metadata based on the telematics data transmitted in the eCall message. The eCall message may also include a call-back number, and the PSAP may contact the wireless device directly using the call-back number.
Abstract:
Methods and apparatuses for supporting location and emergency calls for an over-the-top (OTT) service provider are disclosed. A UE may send a request for an emergency call to an OTT service provider and may include in the request mobile network operator (MNO) data for a serving MNO for the UE. The OTT service provider may forward the emergency call request to an Internet Protocol (IP) Multimedia Subsystem (IMS). The IMS may determine routing information for the emergency call and either return the routing information to the OTT service provider to enable the OTT service provider to route the emergency call to a public safety answering point (PSAP) or may route the emergency call itself to the PSAP. The call request routed by the IMS or by the OTT service provider may include a reference identifier that may enable the PSAP to obtain a location for the UE from the IMS.
Abstract:
Systems and methods for requesting and providing assistance data for a satellite positioning system are described herein. A method as described herein includes receiving, at a base station over a wireless communication link, a first message from a mobile station, wherein the first message comprises a first field identifying requested assistance data associated with a first Satellite Positioning System (SPS) and a second field identifying a requested format of the requested assistance data, and wherein the requested assistance data are available in a plurality of formats that includes the requested format; and transmitting a second message from the base station to the mobile station over the wireless communication link, wherein the second message includes the requested assistance data in the requested format.
Abstract:
A particular method includes generating, at a secure user plane location (SUPL) server, a message to be sent to a mobile device, the message including: a server certificate including an identifier of the SUPL server and a public key of the SUPL server; and a request for a device certificate of the mobile device. The method also includes receiving a reply from the mobile device that includes a device certificate of the mobile device; and authenticating the mobile device as associated with a SUPL user based on the device certificate.
Abstract:
A large volume of location related information, e.g., assistance data or location information, is transferred in separate messages between a server and a target by segmenting the location related information into a plurality of messages. If the connection between the server and target is released prior to completion of the transfer of the location related information, the transfer is resumed by sending the remaining messages after connection is reestablished. Each message is sent after receiving an acknowledgement of receipt. Thus, both the server and target can control the flow of the transfer by delaying the sending of one or more messages or delaying the sending of the acknowledgements of receipt.
Abstract:
Systems, apparatus and methods for reducing a long list of access points (APs) to a short list of access points are presented. Advantageously, a mobile device only need to search for access points on the short list thereby more quickly discovering access points, saving battery power, determining a position fix based on the discovered access points, and reducing a time to fix. Embodiments enable a mobile device to determine which access points should be detectable at a new location of the mobile device. Various embodiments comprise: (1) a linked database; (2) a grouped database; (3) an associated database; and (4) database feedback.
Abstract:
Techniques are provided that may be implemented in various methods, apparatuses and articles of manufacture for use by one or more electronic devices to support proximity services for a mobile device. In an example implementation, a computing device may determine whether a first mobile device and a second mobile device are each operatively provisioned to make use of a common proximity service, use a first procedure to determine whether a state of near proximity exists between at least two mobile devices, use a second procedure to determine whether a state of proximity exists between the at least two mobile devices, and initiate notification of a user and/or an application of at least one of the mobile devices in response to one or more of such determinations.