Abstract:
Provided is a method of forming a shaped structure. The method includes coupling a first section of a mold to a second section of the mold such that a mold cavity is defined, wherein a cross-sectional shape of the mold cavity corresponds to a cross-sectional shape of the shaped structure and wherein at least one of the first section of the mold and the second section of the mold comprise a soluble material; at least partially filling the mold cavity with a curable polymer; and curing the curable polymer in the mold cavity to make the shaped structure.
Abstract:
A manufactured component, method and apparatus for advanced manufacturing that includes a polymeric working material formed into a mandrel with a carbon fiber overlay formed in a continuation of the process. The mandrel build and the carbon fiber overlay of the component preferably take place at atmospheric temperatures.
Abstract:
A material system for producing a water-soluble casting mold, comprising at least one water-soluble material for building a casting mold in a layering method, as well as comprising at least one material for sealing the surface of the casting mold. The water-soluble material is a material for building the casting mold using a powder bed-based layering method. The sealing material is preferably water insoluble. The material system may also include a free-flowing, hardenable material, which is preferably a hydraulically setting material. The materials of the casting mold are preferably dissolved with the aid of an aqueous solution, and in particular with the aid of a heated aqueous solution.
Abstract:
Impellers made of composite materials with flow path cavities covered by an erosion resistant coating are manufactured by covering removable molds having shapes corresponding to a negative geometry of the flow path cavities, with the erosion resistant coating using plating or thermal spraying. After shaping and curing a composite material around the molds covered with the erosion resistant coating, the molds are removed, while the erosion resistant coating remains on the composite impeller.
Abstract:
A method of manufacturing a radius filler may include providing a plurality of fibers, braiding the plurality of fibers into a braided preform, shaping the braided preform into a braided radius filler, and cutting the braided radius filler to a desired length.
Abstract:
Apparatus and methods are described for manufacturing contact lenses employing dissolvable mold structure. The apparatus and methods involve approaches to dissolve at least portions of a mold and to separate a lens from the mold to present the lens for collection.
Abstract:
Described herein are sacrificial templates generated from water soluble thermoplastic-divalent cation-composite materials, such as poly(vinyl alcohol)-calcium. Also described herein are methods for the use of such sacrificial templates in casting of precise internal space microarchitectures within hydrogels, such as microchannel networks within alginate hydrogels.
Abstract:
A tooling system may include an outer mold line (OML) tool and one or more inner mold line (IML) tools. The OML tool may have an OML tool surface. Each one of the IML tools may have an IML tool surface and may be receivable within the OML tool 202. Each IML tool may be formed of expandable material. Each IML tool may apply an internal compaction pressure to a composite assembly positioned between the OML tool surface and the IML tool surface when the expandable material is heated.
Abstract:
A catheter for ablating tissue is provided. The catheter comprises an elongated generally-tubular catheter body having proximal and distal ends. An electrode assembly is provided at the distal end of the catheter body. The electrode assembly including a porous electrode arrangement that is generally transverse to the catheter body. The porous electrode arrangement comprises one or more electrodes electrically connected to a suitable energy source and a porous sleeve mounted in surrounding relation to the one or more electrodes and defining an open space between the porous sleeve and the one more electrodes. One or more irrigation openings fluidly connect the open space to a lumen extending through the catheter through which fluid can pass. In use, fluid passes through the lumen in the catheter, through the one or more irrigation openings, into the open space and through the porous sleeve.
Abstract:
A three-dimensional part is printed using an additive manufacturing technique. The three-dimensional part includes an outer wall having an outer surface defining a shape of a part and in interior surface defining an interior cavity. The part includes a plurality of first sections having a plurality of printed layers, each printed layer of the first section having a plurality of wall segments that form triangle shaped cells wherein each of the plurality of first sections are attached to the interior surface of the outer wall. The part includes a plurality of second sections having a plurality of printed layers, each printed layer of the second section having a plurality of wall segments that form hexagram shaped cells of hexagons and triangles, wherein each of the plurality of second printed sections are attached to the interior surface of the outer wall and wherein the first and second sections are in an alternating pattern, wherein when adjacent printed layers of the first and second sections are printed a wall segment of a cell defining a triangle bisect the hexagon shaped cell.