Abstract:
A waste treatment process includes charging a reactor container (12) with a reactant alkaline metal alloy (10) and isolating the reactant alloy from oxygen gas. After heating the reactant alloy (10) in the reactor container (2) to a minimum of 770 degrees Celsius, a waste material is introduced into the molten alloy, preferably below the surface of the alloy. The waste material is pyrolized in the reactant alloy (10) to produce useful chlorine salts and other materials. The reactant alloy (10) includes magnesium and/or lithium, aluminum, zinc, calcium, and copper.
Abstract:
Methods and apparatus for high efficiency generation of electricity and low oxides of nitrogen (NO.sub.x) emissions are provided. The electricity is generated from combustion of hydrogen-rich gases produced in waste conversion units using ultra lean fuel to air ratios in the range of 0.4-0.7 relative to stoichiometric operation in internal combustion engine-generators or ultra lean operation in gas turbines to ensure minimal production of pollutants such as NO.sub.x. The ultra lean operation also increases the efficiency of the internal combustion engine. High compression ratios (r=12 to 15) can also be employed to further increase the efficiency of the internal combustion engine. Supplemental fuel, such as natural gas or diesel oil, may be added directly to the internal combustion engine-generator or gas turbine for combustion with the hydrogen-rich gases produced in waste conversion unit. In addition, supplemental fuel may be reformed into a hydrogen-rich gas in a plasma fuel converter and then introduced into the internal combustion engine-generator or a gas turbine for combustion along with supplemental fuel and the hydrogen-rich gases produced in waste conversion unit. The preferred embodiment of the waste conversion unit is a fully integrated tunable arc plasma-joule heated melter with a common molten pool and power supply circuits which can be operated simultaneously without detrimental interaction with one another. In this embodiment, the joule heated melter is capable of maintaining the material in a molten state with sufficient electrical conductivity to allow rapid restart of a transferred arc plasma.
Abstract:
Methods and apparatus for treating waste are provided. Waste is converted in an arc plasma-joule heated melter system utilizing one or more arc plasma electrodes and a plurality of joule heating electrodes. The arc plasma electrode(s) can be configured for operation utilizing AC or DC power, or for switching between AC and DC power. The arc plasma electrodes can also be configured for independent arc voltage and arc current control. The joule heating circuits are configured for simultaneous operation with the arcing electrodes, but without detrimental interaction with the arcing electrodes. The systems provide stable, non-leachable products and a gaseous fuel. The gaseous fuel can be utilized in a combustion or non-combustion process to generate electricity.
Abstract:
The present invention provides a relatively compact self-powered, tunable waste conversion system and apparatus which has the advantage of highly robust operation which provides complete or substantially complete conversion of a wide range of waste streams into useful gas and a stable, nonleachable solid product at a single location with greatly reduced air pollution to meet air quality standards. The system provides the capability for highly efficient conversion of waste into high quality combustible gas and for high efficiency conversion of the gas into electricity by utilizing a high efficiency gas turbine or by an internal combustion engine. The solid product can be suitable for various commercial applications. Alternatively, the solid product stream, which is a safe, stable material, may be disposed of without special considerations as hazardous material. In a preferred embodiment of the invention, the arc plasma furnace and joule heated melter are formed as a fully integrated unit with a common melt pool having circuit arrangements for the simultaneous independently controllable operation of both the arc plasma and the joule heated portions of the unit without interference with one another. The apparatus may additionally be employed with reduced or without further use of the gases generated by the conversion process. The apparatus may be employed as a self-powered or net electricity producing unit where use of an auxiliary fuel provides the required level of electricity production.
Abstract:
First and second feed streams are injected into a molten bath, thereby creating first and second jets. The first and second jets combine to form a substantially planar, or fan jet, region within the molten bath. The first and second feed streams can include a variety of materials, such as oxidant, reducing agents, or waste materials, such as organic waste. In addition, the feed streams can include distinct reactants that are combined in the fan jet region for reaction with each other or with one or more components of the molten bath.
Abstract:
Methods and apparatus for high efficiency generation of electricity and low oxides of nitrogen (NO.sub.x) emissions are provided. The electricity is generated from combustion of hydrogen-rich gases produced in waste conversion units using ultra lean fuel to air ratios in the range of 0.4-0.7 relative to stoichiometric operation in internal combustion engine-generators or ultra lean operation in gas turbines to ensure minimal production of pollutants such as NO.sub.x. The ultra lean operation also increases the efficiency of the internal combustion engine. High compression ratios (r=12 to 15) can also be employed to further increase the efficiency of the internal combustion engine. Supplemental fuel, such as natural gas or diesel oil, may be added directly to the internal combustion engine-generator or gas turbine for combustion with the hydrogen-rich gases produced in waste conversion unit. In addition, supplemental fuel may be reformed into a hydrogen-rich gas in a plasma fuel converter and then introduced into the internal combustion engine-generator or a gas turbine for combustion along with supplemental fuel and the hydrogen-rich gases produced in waste conversion unit. The preferred embodiment of the waste conversion unit is a fully integrated tunable arc plasma-joule heated melter with a common molten pool and power supply circuits which can be operated simultaneously without detrimental interaction with one another. In this embodiment, the joule heated melter is capable of maintaining the material in a molten state with sufficient electrical conductivity to allow rapid restart of a transferred arc plasma.
Abstract:
A process for the destruction of a halocarbon, which process comprises reacting the halocarbon with molten sodium at an elevated temperature to produce the corresponding sodium halide or halides in a sludge in the molten sodium and separating the sludge from the molten sodium.
Abstract:
An injector nozzle has been designed for safely injecting energetic waste materials, such as high explosives, propellants, and rocket fuels, into a molten salt reactor in a molten salt destruction process without premature detonation or back burn in the injection system. The energetic waste material is typically diluted to form a fluid fuel mixture that is injected rapidly into the reactor. A carrier gas used in the nozzle serves as a carrier for the fuel mixture, and further dilutes the energetic material and increases its injection velocity into the reactor. The injector nozzle is cooled to keep the fuel mixture below the decomposition temperature to prevent spontaneous detonation of the explosive materials before contact with the high-temperature molten salt bath.
Abstract:
Molten salt process for destruction of fluorine-containing waste in a molten salt such as molten sodium carbonate, and forming fluoride salts in the molten salt bath. The destructive phase change of conventional alpha-alumina refractory of the molten salt retaining vessel in the presence of such fluoride salts is avoided according to the invention by employing phase change resistant beta-alumina refractory bricks.
Abstract:
A method for dissociating organic waste to produce a gasified hydrocarbon. The method of the invention includes directing an organic waste, into a reaction zone containing a molten metal bath in a reactor maintained under conditions sufficient to dissociate the organic waste and to form a gasified hydrocarbon component. Wherein the organic waste includes an inorganic component, the an inorganic component is retained in a vitreous and/or molten metal phase or is removed form the gaseous phase by physical or chemical separation.