摘要:
A method includes positioning an effective amount of a thermal target material at a treatment site of a patient. The treatment site, that is, the location of the thermal target material, comprises a location adjacent to biological tissue to be treated. The thermal target material includes carbon molecules preferably in a carrier fluid. Regardless of the particular structure of the carbon, the carbon molecules in the material heat very rapidly in response to incident microwave radiation and radiate heat energy. The heat energy radiated from an effective amount of the thermal target material when subjected to an effective quantity of microwave energy causes localized heating around the thermal target material. This localized heating may be applied for therapeutic purposes. However, the microwave radiation necessary to produce therapeutically effective heating is insufficient to cause cellular damage in the biological tissue by direct absorption in the tissue.
摘要:
A method for producing carbon nanostructures according to the invention includes injecting acetylene gas into a reactant liquid. The injected acetylene molecules are then maintained in contact with the reactant liquid for a period of time sufficient to break the carbon-hydrogen bonds in at least some of the acetylene molecules, and place the liberated carbon ions in an excited state. The liberated carbon ions in the excited state then traverse a surface of the reactant liquid and enter a collection area where carbon ions combine to produce carbon nanostructures.
摘要:
A method includes isolating carbon atoms as carbide anions below a surface of a reactant liquid. The carbide anions are then enabled to escape from the reactant liquid to a collection area where carbon nanostructures may form. A carbon structure produced in this fashion includes at least one layer made up of hexagonally arranged carbon atoms. Each carbon atom has three covalent bonds to adjoining carbon atoms and one unbound pi electron.
摘要:
A method includes producing an isolation atmosphere in a phase changing area above a reactant liquid and then injecting a feed material into the reactant liquid. The feed material includes a carbon-bearing material. The method further includes maintaining the molecules of the injected carbon-bearing material and any reaction products in contact with the reactant liquid for a period of time sufficient to liberate carbon atoms from the carbon-bearing material or reaction products from that material, and place the liberated carbon atoms in an excited state. Liberated carbon atoms in the excited state are then allowed to traverse a surface of the reactant liquid and flow along a particle formation path through the phase changing area so that the liberated carbon atoms may phase change to the ground state while suspended in the phase changing area.
摘要:
A target material (60) to be treated in a liquid reactant metal is loaded into a containment area defined within a liquid reactant metal treatment vessel (11). The containment area is then placed below the level (L) of the liquid reactant metal in the treatment vessel (11). This places the target material (60) in contact with the liquid reactant metal and allows the desired reactions to occur. Reaction products are then removed from the treatment vessel (11). Placing the containment area below the level (L) of liquid reactant metal in the treatment vessel (11) may be accomplished by pivoting the vessel from a loading position to a treating position to shift the level of liquid reactant metal in the vessel.
摘要:
A liquid reactant metal alloy includes at least one chemically active metal for reacting with non-radioactive material in a mixed waste stream being treated. The reactant alloy also includes at least one radiation absorbing metal. Radioactive isotopes in the waste stream alloy with, or disperse in, the chemically active and radiation absorbing metals such that the radiation absorbing metals are able to absorb a significant portion of the radioactive emissions associated with the isotopes. Non-radioactive constituents in the waste material are broken down into harmless and useful constituents, leaving the alloyed radioactive isotopes in the liquid reactant alloy. The reactant alloy may then be cooled to form one or more ingots in which the radioactive isotopes are effectively isolated and surrounded by the radiation absorbing metals. These ingots comprise the storage products for the radioactive isotopes. The ingots may be encapsulated in one or more layers of radiation absorbing material and then stored.
摘要:
A waste treatment process includes charging a reactor container (12) with a reactant alkaline metal alloy (10) and isolating the reactant alloy from oxygen gas. After heating the reactant alloy (10) in the reactor container (2) to a minimum of 770 degrees Celsius, a waste material is introduced into the molten alloy, preferably below the surface of the alloy. The waste material is pyrolized in the reactant alloy (10) to produce useful chlorine salts and other materials. The reactant alloy (10) includes magnesium and/or lithium, aluminum, zinc, calcium, and copper.
摘要:
A continuously operable portable icemaker charged with an ammonia solution and pressured to about 450 pounds per square inch with hydrogen and powered with a source of heat to cause percolation of the ammonia solution acts to freeze water charged into a removable refillable cylindrical vessel.
摘要:
A modular system using molten aluminum alloy for degradation of wastes to innocuous molecular products using a central molten alloy heat source unit and separate reactor units for differing wastes. The molten alloy is pumped to the reactor units and returns by gravity flow to the central heat source which is maintained at about 850 to 950 degrees centigrade.
摘要:
Equipment and process for dissolving a metal container filled with ultra hazardous liquids and gases underneath a molten alloy surface at a temperature of about 800.degree. C. in order to completely molecularly decompose and react resultant product of the hazardous liquids and gases to allow environmentally safe discharge of the final non-hazardous products.