Abstract:
A method includes receiving digital content data including audio data and/or video data, generating haptic data using at least some of the received digital content data, encoding the haptic data for efficient transmission over a communication network, multiplexing the encoded haptic data with the received digital content data, embedding information for decoding the encoded haptic data in metadata of the multiplexed data stream, and sending the multiplexed data stream over the communication network. The method may include analyzing the haptic data to determine at least one characteristic of the haptic data, and the encoding the haptic data may include encoding, based on the determined characteristic, the haptic data to meet a pre-defined criteria.
Abstract:
The present invention relates to a providing a method and/or an apparatus for transceiving a broadcast signal for a panorama broadcast service. The method for transmitting a broadcast signal, according to one embodiment of the present invention, comprises the steps of: encoding an image, multiplexing into a single broadcast stream, the encoded image and signaling information related to the image, wherein the signaling information includes signaling information related to a panoramic image; generating a broadcast signal including the multiplex broadcast stream; and transmitting the generated broadcast signal.
Abstract:
The present invention relates to a signal transmission and reception apparatus and a signal transmission and reception method. An embodiment of the present invention provides a signal transmission method comprising: a step (S110) of encoding video data; a step (S120) of encoding a file format including the encoded video data, wherein the file format includes pre-filtering information for trick play; and a step (S130) of transmitting data including the encoded file format. According to an embodiment of the present invention, it is possible to provide trick play for an encoded stream more efficiently.
Abstract:
An example method includes requesting a data stream using a buffer with an initial maximum window size for buffering received data associated with the requested data stream, receiving into the buffer one or more data segments associated with the data stream, removing from the buffer one or more data segments for use by a receiving device, and determining a current window size of the buffer, wherein the current window size is equal to the maximum window size less any data segments which have been received that have not been removed from the buffer. The method further includes comparing the current window size to a predetermined threshold, and in response to determining that the current window size is less than the predetermined threshold, increasing the maximum window size, and initiating a buffer size increase timer having a current timer value and a timer expiration value.
Abstract:
An article of manufacture includes a computer readable medium having stored thereon instructions which, when executed by a processor, cause the processor to receive a formatted video signal, decode the formatted video signal into one or more watermarked images, perform watermark decoding of one of the one or more watermarked images to retrieve a frame sequence number and perform video quality assessment based, at least in part, upon the frame sequence number and perform parameter optimization based, at least in part, upon a result of the video quality assessment.
Abstract:
In some examples, techniques and architectures for modifying resolution of video displayed on a display device include receiving information from a distance sensor and one or more image sensors, detecting an activity of a viewer of the display device based, at least in part, on the information received from the distance sensor and the one or more image sensors, and transmitting a request to a remote server to adjust bandwidth of media content streaming to the display device to a new bandwidth. The new bandwidth may be based, at least in part, on one or more of the activity of the viewer, size of the display device, or an ability of the viewer to resolve images displayed on the display device.
Abstract:
A video processing system includes a video encoder that encodes a video stream into an independent video layer stream and a first dependent video layer stream based on a motion vector data or grayscale and color data.
Abstract:
Disclosed are various embodiments for adjusting the encoding of a video signal into a video stream based on user attention. A video signal is encoded into a video stream. A temporary lapse of attention by a user of the interactive application is predicted. The encoding of the video signal into the video stream is adjusted from an initial state to a conservation state in response to predicting the temporary lapse of attention by the user. The conservation state is configured to conserve one or more resources used for the video stream relative to the initial state.
Abstract:
The present invention provides a method for configuration of video stream output from a digital video camera that comprises: at the digital video camera connected to a communication network, producing a first video stream of a scene and producing a second video stream of the scene; at a client connected to the communication network, receiving the first and second video streams and causing at least one video stream parameter of the first set of video stream parameters to be adjusted such that a bit rate of the first video stream is affected; at the digital video camera, continuously adjusting the producing of the first video stream based on the caused adjustment of the at least one video stream parameter of the first set of video stream parameters; and on a display of the client, continuously displaying at least a portion of each frame of the first video stream.
Abstract:
Video content is uploaded via the Internet to a video-on-demand (VOD) server identified by a title and a hierarchical address of categories and subcategories for categorizing the title. The VOD server converts and stores the video content at a storage address in a video content database linked to the title. The title is listed in a location of an electronic program guide (EPG) using the same categories and subcategories as in its hierarchical address. Any TV subscriber can access the EPG and navigate through its categories and subcategories to find a title for viewing on the TV. This can enable many, new blogging or podcasting-like programs by popular “Hosts” to be self-published on the Internet and readily navigated for display on TV. The EPG can also store TV program addresses as bookmarks and allow them to be shared with other subscribers or with friends and contacts online by sending to their email addresses.