摘要:
The cartridge according to the invention for analysing biological samples comprises: a reaction chamber and a biochip mounted in the reaction chamber, a filling nozzle connected so as to communicate with the reaction chamber, and a compensation chamber connected so as to communicate with the reaction chamber, wherein the reaction chamber, the compensation chamber and all lines connected thereto form a chamber sealed as far as the filling nozzle, wherein the filling nozzle forms a free passage to the reaction chamber from outside the cartridge, and a stopper is provided which fits positively and tightly in the filling nozzle in such a way that, when pressed in over a certain distance, fluid is displaced from the filling nozzle towards the reaction chamber.
摘要:
A sensor is described for optically determining the concentration of an analyte in a body fluid. This sensor comprises a needle arrangement which has at least one hollow needle having a hollow space extending from the distal end to the proximal end, the distal end of which is suitable for lancing. The proximal end of the needle opens into a chamber in which liquid that enters through the distal end of the needle can be collected. A window which is at least partially permeable to infrared radiation is in direct contact with the chamber.
摘要:
An apparatus and method for measuring a range of small volumes of fluids to a high degree of precision, said apparatus including: a) a single reaction chamber (20); b) a piston (30) operable within said chamber to selectively and precisely vary the internal volume of said chamber; c) a first inlet (41) to said chamber in communication with one or more fluid sources of which a portion of a first fluid of said one or more fluids is adapted to be drawn into said chamber; d) at least one further inlet (43) including a second inlet to said chamber in communication with one or more fluid sources of which a portion of a second fluid of said one or more fluids is adapted to be drawn into said chamber; and e) a sealable outlet (45), wherein said piston is adapted to progressive draw said portion of a second fluid into said chamber until either accurare metering of a volume of said first or second portion of fluid is achived or a reaction involving said first and second portions in said chamber (such as a titration reaction) is completed.
摘要:
Various embodiments of the application provide a photoacoustic sensor, which includes: a gas cell having an opening; a light source to generate a radiation to radiate sample gas within the gas cell; a detector to detect the sample gas within the gas cell, and to generate electrical signals in response to acoustic signals generated by pressure fluctuations of the radiated sample gas caused by the radiation; and an active valve having a speaker aligned with the opening of the gas cell. The speaker having a voice coil and a diaphragm attached to the voice coil. A control signal is applicable for the speaker to control access of the gas cell. During sampling, the control signal causes the voice coil of the speaker to repeatedly or constantly lift the diaphragm from contact with the opening of the gas cell to allow sample gas enter the gas cell. While during detecting, the spring force of the voice coil causes the diaphragm in tight contact with the opening of gas cell to seal the gas cell.
摘要:
An anti-fouling submersible liquid sensor (100) is provided according to the invention. The anti-fouling submersible liquid sensor (100) includes a measurement chamber (102) including one or more liquid measurement sensors (121) and at least one chamber aperture (104), at least one gate (107), a gate actuator (128) configured to selectively move the at least one gate (107) between open and closed positions with regard to the at least one chamber aperture (104), and a radiation source (124) configured to inactivate at least a portion of a liquid sample in the measurement chamber (102). The anti-fouling submersible liquid sensor (100) is configured to admit the liquid sample into the measurement chamber (102), perform one or more measurements on the liquid sample, substantially inactivate biological material within the liquid sample with radiation from the radiation source (124), and hold the inactivated liquid sample until a next sample time.
摘要:
The application relates to a method and a microelectronic sensor device for making optical examinations in an investigation region (13) at the contact surface (12) of a carrier (10), wherein an input light beam (L1, L1′) is sent from a light source (20) towards the investigation region (13), and wherein an output light beam (L2, L2′) coming from the investigation region (13) is detected by a light detector (30). An evaluation unit (50) that is coupled to the light detector (30) is adapted to determine the wetting grade of the investigation region (13) based on a characteristic parameter of the output light beam (L2, L2′), e.g. its intensity. In a preferred embodiment, the evaluation unit (50) is adapted to determine a change in the light intensity caused by a liquid contacting the contact surface (12). The wetting grade may particularly be detected in a test region (14) that is located adjacent to the investigation region (13) and that has a higher roughness than the investigation region (13).
摘要:
With a measuring instrument for measuring sample particles moving in a cuvette, for example for measuring a zeta potential or the Brownian size the particles, with a filling device for filling and an emptying device for emptying the cuvette mounted on the ends thereof and with devices for irradiating and for monitoring the particles, it is problematical always to position the cuvette correctly or in a defined manner relative to the direction of radiation and to the monitoring device. To resolve this problem, it is proposed that the cuvette member is mounted by means of a cuvette bearing and the filling and the emptying device are fastened exclusively to the cuvette in such a way that the position of the cuvette relative to the surroundings thereof is determined and defined exclusively by the cuvette bearing.
摘要:
The apparatus for examining bodily fluids comprising a plurality of cuvettes into which bodily fluid and a reagent can be introduced is distinguished by the apparatus comprising chambers that are open at the top, the number of said chambers being at least equal to the number of the cuvettes.
摘要:
A dispensing device discharges a liquid into a well of a microchip, which includes the well having an opening at the upper end, and a microchannel in fluid communication with the lower end of the well. The well has a bottom portion formed by an annular step portion projecting inward at the lower end. The dispensing device includes: a nozzle having a tip opening for suctioning and discharging a liquid therethrough; a pump for supplying suction pressure and discharge pressure to the nozzle; moving unit for causing relative movement of the nozzle at least in depth direction of the well; and control unit for causing the moving unit to cause the relative movement of the nozzle until the tip opening reaches the bottom portion, and then causing the liquid to be discharged such that the liquid first contacts a bottom surface and/or an inner circumferential surface of the bottom portion.
摘要:
A downhole fluid sample container includes a fluid sample container detachably coupled to a downhole sub, the fluid sample container having an internal chamber for receiving the downhole fluid. At least one semimetal (for example, silicon or germanium) window is coupled to the fluid sample container, the window being substantially transparent to electromagnetic energy wavelengths within a selected band. A method includes transmitting electromagnetic energy from an electromagnetic energy source to downhole fluid through at least one semimetal window in a container, receiving an electromagnetic energy response with a spectrometer, and estimating the downhole fluid property based at least in part on the electromagnetic energy response.