Abstract:
A high frequency power amplifier maintains an excellent linearity regardless of a fluctuation of a load impedance and is downsized. The high frequency power amplifier detects an AC voltage amplitude at an output terminal of a final amplification stage transistor, and suppresses an input signal amplitude of a power amplifier when the voltage amplitude exceeds a predetermined threshold value.
Abstract:
The present invention provides a semiconductor device which comprises active components, passive components, wiring lines and electrodes and are satisfactory in terms of mechanical strength, miniaturization and thermal stability. In the semiconductor device, openings are formed just below active components. These openings are filled with conductor layers. Conductor layers are also formed where openings are not formed.
Abstract:
Disclosed is a power amplifier having highly stable and excellent controllability, and having low noise in comparison with conventional power amplifiers. With the power amplifier, a differential amplifier made up of transistors Q1, Q2 is provided in the initial stage thereof, and baluns doubling as inter-stage matching circuits, comprised of Cp1, Cp2, Lp1, and Ct1, Ct2, Lt1, respectively, are provided between the initial stage, and a second stage while an unbalanced single-ended circuit is provided in the second stage. The differential amplifier has an emitter-coupled type configuration for coupling both emitters with each other, and output control of the amplifier in the initial stage is executed by varying current of a current source coupled to both the emitters.
Abstract:
In a base-bias-control-type high-frequency power amplifier with a plural stage configuration, a rising voltage of a base bias current supplied to an initial stage transistor is made lower than a rising voltage of a base bias current supplied to a second stage transistor by a bias circuit, and a difference between the both voltages is set to be smaller than a base-emitter voltage of an amplifying stage transistor. Also, a rising voltage of a base bias current supplied to a third stage transistor is made equal to the rising voltage of the base bias current supplied to an initial stage transistor. Accordingly, a technology capable of improving the power control linearity can be provided in a high-frequency power amplifier used in a polar-loop transmitter or the like.
Abstract:
A high frequency power amplifier maintains an excellent linearity regardless of a fluctuation of a load impedance and is downsized. The high frequency power amplifier detects an AC voltage amplitude at an output terminal of a final amplification stage transistor, and suppresses an input signal amplitude of a power amplifier when the voltage amplitude exceeds a predetermined threshold value.
Abstract:
For use in an amplifier configuration including a high-power amplifier and a low-power amplifier which are always interconnected in terms of high frequencies and between which switching is made using no switches, a highly stable high-frequency power amplifier module with high isolation between the amplifiers is provided. To reduce wrapping around from a low-power amplifier section in an activated state to a high-power amplifier section in a deactivated state or from the high-power amplifier section in an activated state to the low-power amplifier section in a deactivated state, an input matching circuit having high isolation characteristics is included in an input matching circuit portion which does not have much to do with amplifier efficiency. Switching of each of the amplifier sections between an activated state and a deactivated state is effected by control using bias input terminals.
Abstract:
The present invention provides a radio frequency power amplifier which may not introduce radio frequency loss during switching power amplifier units between high and low output power levels. By connecting a first-stage matching network M12 and first-stage matching network M13 to respective output nodes of a power amplifier unit A11 and power amplifier unit A12 that either one operate by switching, connecting the output nodes of the first-stage matching network M12 and M13 in parallel, connecting a last-stage matching network M11 between the junction of M12 and M13 and the output terminal OUT, the first-stage matching networks M12, M13, and last-stage matching network M11 are formed, for both power amplifier units A11 and A12, so that impedance matching is established between the output terminal OUT and the power amplifier unit in operation when one unit is in operation the other is in stop of operation. The present invention allows switching from one power amplifier unit to the other without the need of a radio frequency switch.
Abstract:
An amplifier using a wide band, high efficiency, and low distortion amplifier free from clipping distortion, and a high efficiency and low distortion radio frequency power amplifier, using that amplifier, which can be applied to wide band wireless communication systems are provided. The amplifier has a DC-DC converter 2, augmented with a low pass filter 4, for amplifying the low frequency components of an input signal from a terminal 5, and a class B amplifier, augmented with a high pass filter, for amplifying the input signal and supplying its high frequency components after amplification. The DC-DC converter and the class B amplifier are connected in parallel, and the power supply voltage of the class B amplifier is controlled with the low frequency components of the input signal.
Abstract:
A power amplifier module comprises a plurality of amplifier stages, each including a reference amplifier for emulating the operation of the amplifier. The current flowing to the base of a bipolar transistor that forms each reference amplifier depending on an input power level is detected, amplified, and supplied as base current of the transistor of the corresponding amplifier.
Abstract:
A technology is provided so that RF modules used for cellular phones etc. can be reduced in size. Over a wiring board constituting an RF module, there are provided a first semiconductor chip in which an amplifier circuit is formed and a second semiconductor chip in which a control circuit for controlling the amplifier circuit is formed. A bonding pad over the second semiconductor chip is connected with a bonding pad over the first semiconductor chip directly by a wire without using a relay pad. In this regard, the bonding pad formed over the first semiconductor chip is not square but rectangular (oblong).