Abstract:
The invention provides methods for surgical grafting of a tissue. The method comprises the steps of explanting a graft tissue from a donor, irradiating at least a first portion of the graft tissue with an ion beam, and surgically grafting the graft tissue into a recipient.
Abstract:
The invention provides for a method of improving bioactivity of a surface of an implantable object. The invention also provides for a method of improving bioactivity of a surface of biological laboratory ware. The invention further provides a method of attaching cells to an object. The invention even further provides for a method of preparing an object for medical implantation. The invention also provides for an article with attached cell, and for an article for medical implantation. Improvements result from the application of gas-cluster ion beam technology and from the application of neutral beam technology, wherein neutral beams are derived from accelerated gas-cluster ion beams.
Abstract:
Methods and systems for the improvement of a crystalline and/or poly-crystalline surgical blade include gas cluster ion beam irradiation of the blades in order to smooth; or to sharpen; or to reduce the brittleness and thus reduce susceptibility of the blade to crack, chip, or fracture; or to render the blades hydrophilic. Crystalline or poly-crystalline surgical blade (silicon for example) having a thin film cutting edge with improved properties.
Abstract:
Irradiation of a surface of a material with a gas cluster ion beam modifies the wettability of the surface. The wettability may be increased or decreased dependent on the characteristics of the gas cluster ion beam. Improvements in wettability of a surface by the invention exceed those obtained by conventional plasma cleaning or etching. The improvements may be applied to surfaces of medical devices, such as vascular stents for example, and may be used to enable better wetting of medical device surfaces with liquid drugs in preparation for adhesion of the drug to the device surfaces. A mask may be used to limit processing to a portion of the surface. Medical devices formed by using the methods of the invention are disclosed.
Abstract:
A method of treating a surface of a silicon substrate forms an accelerated gas cluster ion beam of carbon atoms, promotes fragmentation and/or dissociation of gas cluster ions in the beam, removes charged particles from the beam to form a neutral beam, and treats a portion of a surface of the silicon substrate by irradiating it with the neutral beam. A silicon substrate surface layer of SiCX (0.05
Abstract:
A method of modifying the surface of a medical device to release a drug in a controlled way by providing a barrier layer on the surface of one or more drug coatings. The barrier layer consists of modified drug material converted to a barrier layer by irradiation by an accelerated neutral beam derived from an accelerated gas cluster ion beam. Also medical devices formed thereby.
Abstract:
A film and method of forming a film provides an unmodified starting layer of a starting material, the starting layer having opposed first and second surfaces and an initial thickness, T1, and a modified surface layer of thickness T2 which is less than T1, formed in at least a portion of the second surface, wherein a portion of the modified surface layer is not supported by unmodified starting material removed from the first surface opposite the modified surface layer.
Abstract:
A method for improving bioactivity and/or biodegradation time of a collagen surgical implant and collagen surgical implants having such improved properties. A gas-cluster ion-beam (GCIB) is formed in a reduced-pressure chamber, a collagen surgical implant is introduced into the reduced-pressure chamber, and at least a first portion of the surface of said collagen surgical implant is irradiated with a GCIB-derived beam.