Abstract:
A voltage controlled oscillator module including a VCO unit and a gain adjustment unit is provided. The VCO unit is configured to generate a frequency signal based on a control voltage. The gain adjustment unit is coupled to the VCO unit and configured to receive a first adjustment voltage, a second adjustment voltage, and a reference voltage and accordingly adjusts the control voltage to adjust a frequency value of the frequency signal. The gain adjustment unit includes an adjustment circuit unit and a reference circuit unit. A first voltage-frequency curve of the frequency value of the frequency signal and a voltage value of the first adjustment voltage changes in response to a structure characteristic of the adjustment circuit unit. Furthermore, a frequency generating system and a method for adjusting a signal frequency of the VCO module are provided.
Abstract:
An exemplary embodiment of the disclosure provides a switch module which includes a first conductive unit, a first switch unit and a first electrostatic protection module. The first electrostatic protection module is coupled between the first conductive unit and the first switch unit. The first electrostatic protection module includes a first protection circuit and a first inductor circuit. The first inductor circuit includes a first inductor unit, and the first inductor circuit is coupled between the first protection circuit and the first conductive unit. Accordingly, the transmission efficiency of the switch (or multiplexer) for high speed signal can be improved.
Abstract:
A sampling circuit module, a memory control circuit unit, and a data sampling method, where the sampling circuit module includes a delay lock loop (DLL) and a sampling circuit. The DLL includes a clock control circuit, a clock delay circuit and a voltage control circuit. The clock control circuit performs a delay lock for a reference clock signal, so as to output a selecting signal. The clock delay circuit delays the reference clock signal according to the selecting signal, so as to output a delay clock signal. The voltage control circuit adjusts a driving voltage outputted to the clock control circuit and the clock delay circuit according to the selecting signal. The sampling circuit samples a data signal according to the delay clock signal. Accordingly, a delay ability of the DLL may be improved by adjusting the driving voltage.
Abstract:
An exemplary embodiment provides an equalizer adjustment method. The method includes: performing a handshake operation to establish a connection with a host system by a memory storage device; in the handshake operation, receiving a first signal from the host system and performing a first modulation on the first signal by the adaptive equalizer; after the handshake operation is ended, receiving a second signal from the host system and performing a second modulation on the second signal according to a modulation result of the first modulation by the adaptive equalizer to compensate the second signal; and adjusting the adaptive equalizer according to a modulation result of the second modulation.
Abstract:
An eye-width detector, a memory storage device and an eye-width detection method of data signal are provided. The eye-width detector includes a phase interpolator, a calibration circuit and an eye-width detection circuit. The phase interpolator receives a first clock signal and a phase control signal and output a second clock signal. The calibration circuit receives the first clock signal and the second clock signal and output a first control signal. The eye-width detection circuit receive the data signal, the first clock signal and the second clock signal and generate a first sampling value and a second sampling value. If the first sampling value and the second sampling value do not match a first condition, the eye-width detection circuit outputs a second control signal; otherwise, outputs eye-width information of the data signal. Accordingly, the efficiency of the eye-width detection may be improved.
Abstract:
A phase lock method is provided. The method includes: sampling a data signal according to a plurality of reference clocks and outputting a sampling result; performing a first logic operation according to the sampling result and outputting a first logic result; delaying the first logic result and outputting the delayed first logic result; performing a second logic operation according to the first logic result and the delayed first logic result and outputting a second logic result; outputting a first frequency adjustment signal according to the second logic result; and performing a phase lock according to the first frequency adjustment signal and a frequency of the data signal.
Abstract:
An eye-width detector, a memory storage device and an eye-width detection method of data signal are provided. The eye-width detector includes a phase interpolator, a calibration circuit and an eye-width detection circuit. The phase interpolator receives a first clock signal and a phase control signal and output a second clock signal. The calibration circuit receives the first clock signal and the second clock signal and output a first control signal. The eye-width detection circuit receive the data signal, the first clock signal and the second clock signal and generate a first sampling value and a second sampling value. If the first sampling value and the second sampling value do not match a first condition, the eye-width detection circuit outputs a second control signal; otherwise, outputs eye-width information of the data signal. Accordingly, the efficiency of the eye-width detection may be improved.
Abstract:
A clock and data recovery circuit module and a phase lock method are provided. The module includes a phase detection circuit, a converter circuit and a voltage control oscillation circuit. The phase detection circuit is configured to detect a phase difference between a data signal and a feedback clock. The converter circuit is coupled to the phase detection circuit and configured to output a first phase control voltage and a second phase control voltage according to the phase difference. The voltage control oscillation circuit is coupled to the converter circuit and configured to receive the first phase control voltage and the second phase control voltage and output the feedback clock according to the first phase control voltage and the second phase control voltage.
Abstract:
A connecting interface unit and a memory storage device without a crystal oscillator are provided and include following circuits. A phase detector detects a phase difference between a first reference signal and an input signal from a host system to generate a phase signal. A signal detecting circuit detects a signal character difference between the input signal and the first reference signal for a signal generating circuit to generate a second reference signal. A phase interpolator generates a clock signal according to the phase signal and the second reference signal. A sampling circuit generates an input data signal according to the clock signal. A transmitter circuit modulates an output data signal according to the clock signal or the second reference signal to generate an output signal, and transmits it to the host system. Accordingly, the connecting interface unit conforms to the specification of a transmission standard.
Abstract:
A connecting interface unit and a memory storage device without a crystal oscillator are provided and include following circuits. A phase detector detects a phase difference between a first reference signal and an input signal from a host system to generate a phase signal. A signal detecting circuit detects a signal character difference between the input signal and the first reference signal for a signal generating circuit to generate a second reference signal. A phase interpolator generates a clock signal according to the phase signal and the second reference signal. A sampling circuit generates an input data signal according to the clock signal. A transmitter circuit modulates an output data signal according to the clock signal or the second reference signal to generate an output signal, and transmits it to the host system. Accordingly, the connecting interface unit conforms to the specification of a transmission standard.