Abstract:
A system for pumping laser sustained plasma and enhancing one or more selected wavelengths of output illumination generated by the laser sustained plasma is disclosed. In embodiments, the system includes one or more pump modules configured to generate pump illumination for the laser sustained plasma and one or more enhancing illumination sources configured to generate enhancing illumination at one or more selected wavelengths. The pump illumination may be directed along one or more pump illumination paths that are non-collinear to an output illumination path of the output illumination. The enhancing illumination may be directed along an illumination path that is collinear to the output illumination path of the output illumination so that the enhancing illumination is combined with the output illumination, thereby enhancing the output illumination at the one or more selected wavelengths.
Abstract:
An optical system for generating broadband light via light-sustained plasma formation includes a chamber, an illumination source, a set of focusing optics, and a set of collection optics. The chamber is configured to contain a buffer material in a first phase and a plasma-forming material in a second phase. The illumination source generates continuous-wave pump illumination. The set of focusing optics focuses the continuous-wave pump illumination through the buffer material to an interface between the buffer material and the plasma-forming material in order to generate a plasma by excitation of at least the plasma-forming material. The set of collection optics receives broadband radiation emanated from the plasma.
Abstract:
A system for separating plasma pumping light and collected broadband light includes a pump source configured to generate pumping illumination including at least a first wavelength, a gas containment element for containing a volume of gas, a collector configured to focus the pumping illumination from the pumping source into the volume of gas to generate a plasma within the volume of gas, wherein the plasma emits broadband radiation including at least a second wavelength and an illumination separation prism element positioned between a reflective surface of the collector and the pump source and arranged to spatially separate the pumping illumination including the first wavelength and the emitted broadband radiation including at least a second wavelength emitted from the plasma.
Abstract:
Systems and methods for detecting defects on a wafer are provided. One method includes generating test image(s) for at least a portion of an array region in die(s) on a wafer from frame image(s) generated by scanning the wafer with an inspection system. The method also includes generating a reference image for cell(s) in the array region from frame images generated by the scanning of the wafer. In addition, the method includes determining difference image(s) for at least one cell in the at least the portion of the array region in the die(s) by subtracting the reference image from portion(s) of the test image(s) corresponding to the at least one cell. The method further includes detecting defects on the wafer in the at least one cell based on the difference image(s).
Abstract:
Systems and methods for detecting defects on a wafer are provided. One method includes generating test image(s) for at least a portion of an array region in die(s) on a wafer from frame image(s) generated by scanning the wafer with an inspection system. The method also includes generating a reference image for cell(s) in the array region from frame images generated by the scanning of the wafer. In addition, the method includes determining difference image(s) for at least one cell in the at least the portion of the array region in the die(s) by subtracting the reference image from portion(s) of the test image(s) corresponding to the at least one cell. The method further includes detecting defects on the wafer in the at least one cell based on the difference image(s).
Abstract:
Systems and methods for detecting defects on a wafer are provided. One method includes generating test image(s) for at least a portion of an array region in die(s) on a wafer from frame image(s) generated by scanning the wafer with an inspection system.The method also includes generating a reference image for cell(s) in the array region from frame images generated by the scanning of the wafer. In addition, the method includes determining difference image(s) for at least one cell in the at least the portion of the array region in the die(s) by subtracting the reference image from portion(s) of the test image(s) corresponding to the at least one cell. The method further includes detecting defects on the wafer in the at least one cell based on the difference image(s).
Abstract:
Methods and systems for detecting defects on a wafer are provided. One method includes determining characteristics of care areas for a wafer based on wafer patterns. Determining the characteristics includes determining locations of care areas, identifying at least one pattern of interest (POI) in the wafer patterns for each of the care areas, allowing any of the care areas to have a free-form shape, allowing the care areas to be larger than frame images and selecting two or more POIs for at least one of the care areas. The method also includes searching for POIs in images generated for the wafer using an inspection system. In addition, the method includes detecting defects on the wafer by determining positions of the care areas in the images and applying one or more defect detection methods to the images based on the positions of the care areas in the images.
Abstract:
Systems and methods for detecting defects on a wafer are provided. One method includes determining locations of all instances of a weak geometry in a design for a wafer. The locations include random, aperiodic locations. The weak geometry includes one or more features that are more prone to defects than other features in the design. The method also includes scanning the wafer with a wafer inspection system to thereby generate output for the wafer with one or more detectors of the wafer inspection system. In addition, the method includes detecting detects in at least one instance of the weak geometry based on the output generated at two or more instances of the weak geometry in a single die on the wafer.
Abstract:
Defects from a hot scan can be saved, such as on persistent storage, random access memory, or a split database. The persistent storage can be patch-based virtual inspector virtual analyzer (VIVA) or local storage. Repeater defect detection jobs can determined and the wafer can be inspected based on the repeater defect detection jobs. Repeater defects can be analyzed and corresponding defect records to the repeater defects can be read from the persistent storage. These results may be returned to the high level defect detection controller.
Abstract:
A plasma cell for use in a laser-sustained plasma light source includes a plasma bulb configured to contain a gas suitable for generating a plasma. The plasma bulb is transparent to light from a pump laser, wherein the plasma bulb is transparent to at least a portion of a collectable spectral region of illumination emitted by the plasma. The plasma bulb of the plasma cell is configured to filter short wavelength radiation, such as VUV radiation, emitted by the plasma sustained within the bulb in order to keep the short wavelength radiation from impinging on the interior surface of the bulb.