Abstract:
Provided is a cooling unit to be used in an inspection of a semiconductor device. The cooling unit includes a jacket for dissipating heat of the semiconductor device. The jacket is provided with a light passing portion for passing light from the semiconductor device. The jacket has a space defining surface that faces the semiconductor device and defines a space between the space defining surface and the semiconductor device in a state where the light passing portion faces the semiconductor device. The jacket is provided with a supply flow path through which a fluid to be supplied to the space flows.
Abstract:
An image generating device is an apparatus for acquiring an image which shows a direction of an electric current flowing through a semiconductor device. The image generating device comprises a signal application unit configured to apply a stimulation signal to the semiconductor device, a magnetic detection unit configured to output a detection signal based on a magnetism generated by an application of the stimulation signal, and an image generation unit configured to generate phase image data comprising a phase component which indicates a phase difference based on the phase difference between the detection signal and a reference signal which is generated based on the stimulation signal and generate an electric current direction image which shows the direction of the electric current based on the phase image data.
Abstract:
The present invention relates to a measuring device having a structure for adjusting inclination of an observation surface of a sample with respect to a reference surface which is orthogonal to an optical axis of an objective lens, and the like. The measuring device includes a scanner, arranged on a propagation path of illumination light traveling from a light source toward the sample, configured to change an emission angle of the illumination light, and inclination information of the sample is obtained by associating a signal value of a detection signal for reflected light from the sample and the emission angle of the illumination light, while changing the emission angle of the illumination light by the scanner.
Abstract:
An inspection apparatus comprises a light output unit configured to output first light having a first wavelength and second light having a second wavelength, a magneto-optical crystal arranged so that a reflection film faces a measurement target, a light detection unit configured to detect the first light and the second light, and a light guide optical system configured to guide the first light and the second light toward the magneto-optical crystal and the measurement target, and guide the first light reflected by the magneto-optical crystal and the second light reflected by the measurement target toward the light detection unit. The light guide optical system comprises an optical path switching element configured to perform switching between optical paths of a plurality of optical elements so that the first light and the second light are selectively incident on the light detection unit.
Abstract:
A light source device includes a light source that generates incoherent light, and an optical amplifier having gain characteristics indicating a gain at each wavelength, which receives the incoherent light output by the light source as input light, and outputs amplified light obtained by amplifying the input light, and a central wavelength of an intensity distribution indicating an intensity at each wavelength of the input light is a wavelength longer than a central wavelength of the gain characteristics indicating a gain at each wavelength of the optical amplifier.
Abstract:
A shield plate is a shield plate related to non-contact measurement of temperature of a semiconductor apparatus, and includes a base of which temperature is adjustable, in which the amount of thermal radiation of a blackbody surface located on one side of the base is larger than the amount of thermal radiation of a reflective surface located on a side opposite to the blackbody surface, and the blackbody surface is a blackbody surface that emits infrared rays.
Abstract:
An inspection apparatus includes a tester unit that applies a stimulus signal to a semiconductor apparatus, an MO crystal arranged to face a semiconductor apparatus, a light source that outputs light, an optical scanner that irradiates the MO crystal with light output from light source, a light detector that detects light reflected from the MO crystal arranged to face the semiconductor apparatus D and outputs a detection signal, and a computer that generate phase image data based on a phase difference between a reference signal generated based on a stimulus signal and the detection signal, the phase image data including a phase component indicating the phase difference, and generates an image indicating a path of a current from the phase image data.
Abstract:
A semiconductor device inspection system (1) includes a laser beam source (2), for emitting light, an optical sensor (12) for detecting the light reflected by the semiconductor device (10) from the light and outputting a detection signal, a frequency band setting unit (16) for setting a measurement frequency band and a reference frequency band with respect to the detection signal, a spectrum analyzer (15) for generating a measurement signal and a reference signal from the detection signals in the measurement frequency band and the reference frequency band, and a signal acquisition unit (17) for calculating a difference between the measurement signal and the reference signal to acquire an analysis signal. The frequency band setting unit (16) sets the reference frequency band to a frequency domain in which a level of the detection signal is lower than a level obtained by adding 3 decibels to a white noise level serving as a reference.
Abstract:
A semiconductor device testing apparatus 1A includes a tester unit 16 that generates an operational pulse signal, an optical sensor 10 that outputs a detection signal as a response to the operational pulse signal, a pulse generator 17 that generates a reference signal containing a plurality of harmonics for the operational pulse signal in synchronization with the operational pulse signal, a spectrum analyzer 13 that receives the detection signal and acquires a phase and amplitude of the detection signal at a detection frequency, a spectrum analyzer 14 that receives the reference signal and acquires a phase of the reference signal at a detection frequency, and an analysis control unit 18 that acquires a time waveform of the detection signal based on the phase and the amplitude of the detection signal acquired by the spectrum analyzer 13 and the phase of the reference signal. acquired by the spectrum analyzer 14.
Abstract:
An inspection apparatus is an inspection apparatus for inspecting a sample in which a plurality of light-emitting elements including a first light-emitting element and a second light-emitting element arranged around the first light-emitting element is formed, the inspection apparatus including an excitation light source that generates excitation light to irradiate the sample, a camera that images fluorescence from the sample, and a determining unit that calculates a relative luminance of fluorescence from the first light-emitting element based on the fluorescence from the first light-emitting element and fluorescence from the second light-emitting element imaged by the camera, and compares a calculated value based on an absolute luminance and the relative luminance of the fluorescence from the first light-emitting element with a predetermined threshold value, thereby determining a quality of the first light-emitting element.